Origin of Dark Matter

Manuel Drees

Bonn University

1 Introduction

- 1 Introduction
- 2 Network Activities

- 1 Introduction
- 2 Network Activities
- 3 Other Developments

- 1 Introduction
- 2 Network Activities
- 3 Other Developments
- 4 Summary

1 Introduction

There's still no viable alternative to Dark Matter

1 Introduction

There's still no viable alternative to Dark Matter

CMB anisotropies (WMAP 5 yr) imply

$$\Omega_{\rm DM}h^2 = 0.1099 \pm 0.0062$$

Dunkley et al., arXiv:0803.0586 [astro-ph]

Was
$$\Omega_{\rm DM}h^2 = 0.105^{+0.007}_{-0.013}$$

Spergel et al., astro-ph/0603449

Network activities: Making DM

Let χ be a generic DM particle, n_{χ} its number density (unit: GeV³). Assume $\chi = \bar{\chi}$, i.e. $\chi \chi \leftrightarrow SM$ particles is possible, but single production of χ is forbidden by some symmetry.

Network activities: Making DM

Let χ be a generic DM particle, n_{χ} its number density (unit: GeV³). Assume $\chi = \bar{\chi}$, i.e. $\chi \chi \leftrightarrow SM$ particles is possible, but single production of χ is forbidden by some symmetry.

Evolution of n_{χ} determined by Boltzmann equation; in standard cosmology:

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\rm ann} v \rangle \left(n_{\chi}^2 - n_{\chi, \, \rm eq}^2 \right)$$

 $H = \dot{R}/R$: Hubble parameter

⟨...⟩: Thermal averaging

$$\sigma_{\rm ann} = \sigma(\chi\chi\to {\rm SM~particles})$$

v: relative velocity between χ 's in their cms

 $n_{\chi,\,\mathrm{eq}}:\chi$ density in full equilibrium

Neutralino DM

Two papers investigated neutralino DM in SUGRA scenarios with non–universal boundary conditions:

Finetuning in NUHM: "Finetuning" decreases if several contributions to $\sigma_{\rm ann}$ happen to be comparable (which is not generic). Ellis, King, Roberts, arXiv:0711.2741 [hep-ph]

Neutralino DM

Two papers investigated neutralino DM in SUGRA scenarios with non–universal boundary conditions:

- Finetuning in NUHM: "Finetuning" decreases if several contributions to $\sigma_{\rm ann}$ happen to be comparable (which is not generic). Ellis, King, Roberts, arXiv:0711.2741 [hep-ph]
- Non-universal models with single extra parameter: NU in Higgs or gaugino sector opens many new regions of parameter space. Combinations of collider and DM detection data can distinguish those. Baer, Mustafayev, Park, Tata, arXiv:0802.3384 [hep-ph]

Neutralino DM

Two papers investigated neutralino DM in SUGRA scenarios with non–universal boundary conditions:

- Finetuning in NUHM: "Finetuning" decreases if several contributions to $\sigma_{\rm ann}$ happen to be comparable (which is not generic). Ellis, King, Roberts, arXiv:0711.2741 [hep-ph]
- Non-universal models with single extra parameter: NU in Higgs or gaugino sector opens many new regions of parameter space. Combinations of collider and DM detection data can distinguish those. Baer, Mustafayev, Park, Tata, arXiv:0802.3384 [hep-ph]

Decreasing $H(T \lesssim T_F)$ in ST gravity: Need several "matter sectors" with different CFs to decrease H; increasing H is easier. Catena, Fornengo, Masiero, Pietroni, Schelke, arXiv:0712.3173 [hep-ph].

 $\tilde{\nu}_R$ as inflaton and DM: Can work, albeit at price of tiny neutrino Yukawa coupling. Allahverdi, Dutta, Mazumdar, arXiv:0708.3983 [hep-ph].

- $\tilde{\nu}_R$ as inflaton and DM: Can work, albeit at price of tiny neutrino Yukawa coupling. Allahverdi, Dutta, Mazumdar, arXiv:0708.3983 [hep-ph].
- **■** Type-II seesaw and singlet scalar DM: Can also incorporate TeV scale leptogenesis, with TeV-ish doubly charged Higgses. $S \rightarrow e^+e^-$ can be significant if $m_S \sim 3$ MeV. McDonald, Sahu, Sarkar, arXiv:0711.4820 [hep-ph].

- $\tilde{\nu}_R$ as inflaton and DM: Can work, albeit at price of tiny neutrino Yukawa coupling. Allahverdi, Dutta, Mazumdar, arXiv:0708.3983 [hep-ph].
- Type-II seesaw and singlet scalar DM: Can also incorporate TeV scale leptogenesis, with TeV-ish doubly charged Higgses. $S \rightarrow e^+e^-$ can be significant if $m_S \sim 3$ MeV. McDonald, Sahu, Sarkar, arXiv:0711.4820 [hep-ph].
- **●** 10—point test: $\Omega_{\chi}h^2$; cold; neutral; BBN; stellar evolution; self—interactions; direct searches; γ rays; other astrophysics; testable. Taoso, Bertone, Masiero, arXiv:0711.4996 [astro-ph].

- $\tilde{\nu}_R$ as inflaton and DM: Can work, albeit at price of tiny neutrino Yukawa coupling. Allahverdi, Dutta, Mazumdar, arXiv:0708.3983 [hep-ph].
- Type-II seesaw and singlet scalar DM: Can also incorporate TeV scale leptogenesis, with TeV-ish doubly charged Higgses. $S \rightarrow e^+e^-$ can be significant if $m_S \sim 3$ MeV. McDonald, Sahu, Sarkar, arXiv:0711.4820 [hep-ph].
- **●** 10-point test: $\Omega_{\chi}h^2$; cold; neutral; BBN; stellar evolution; self-interactions; direct searches; γ rays; other astrophysics; testable. Taoso, Bertone, Masiero, arXiv:0711.4996 [astro-ph].
- Primordial black holes in slow—roll inflation: Significant PBH formation possible in standard inflation (running mass model): even easier with curvaton. Kohri, Lyth, Melchiorri, arXiv:0711.5006 [hep-ph]. ★

■ Gravitinos: Production through WW fusion. Ferrantelli, arXiv:0712.2171 [hep-ph].

- Gravitinos: Production through WW fusion. Ferrantelli, arXiv:0712.2171 [hep-ph].
- Flaxino \tilde{F} : Is the (lightest) axino in multi-field, flat direction axion models, with $f_a \sim 10^{10}$ GeV: $\tilde{\tau}_1 \to \tau + \tilde{F}$ is sufficiently fast, but detectable. Chun, H.B. Kim, Kohri, Lyth, arXiv:0801.4108 [hep-ph].

- Gravitinos: Production through WW fusion. Ferrantelli, arXiv:0712.2171 [hep-ph].
- ▶ Flaxino \tilde{F} : Is the (lightest) axino in multi–field, flat direction axion models, with $f_a \sim 10^{10}$ GeV: $\tilde{\tau}_1 \to \tau + \tilde{F}$ is sufficiently fast, but detectable. Chun, H.B. Kim, Kohri, Lyth, arXiv:0801.4108 [hep-ph]. ★
- DM and EWSB in warped gauge—Higgs unification: Works, if discrete "exchange" symmetry is imposed: testable at colliders. Panico, Ponton, Santiago, Serrone, arXiv:0801.1645 [hep-ph]. ★

- Gravitinos: Production through WW fusion. Ferrantelli, arXiv:0712.2171 [hep-ph].
- ▶ Flaxino \tilde{F} : Is the (lightest) axino in multi–field, flat direction axion models, with $f_a \sim 10^{10}$ GeV: $\tilde{\tau}_1 \to \tau + \tilde{F}$ is sufficiently fast, but detectable. Chun, H.B. Kim, Kohri, Lyth, arXiv:0801.4108 [hep-ph]. ★
- DM and EWSB in warped gauge—Higgs unification: Works, if discrete "exchange" symmetry is imposed: testable at colliders. Panico, Ponton, Santiago, Serrone, arXiv:0801.1645 [hep-ph]. ★
- ▶ Z_2 singlino: OK if it interacts with Higgses through scalar S with $m_S \lesssim 10$ TeV; applicable to NMSSM; does not need R-parity. McDonald, Sahu, arXiv:0802.3847 [hep-ph].

DM detection

- Constraining DM properties with INTEGRAL/SPI: No evidence for strong angular variation of flux in X—ray lines between 20 keV and 7 MeV; constrains e.g. "sterile"
 - ν. Boyarsky, Malyshev, Neronov, Ruchayskiy, arXiv:0710.4922 [astro-ph].

DM detection

- Constraining DM properties with INTEGRAL/SPI: No evidence for strong angular variation of flux in X—ray lines between 20 keV and 7 MeV; constrains e.g. "sterile"
 ν. Boyarsky, Malyshev, Neronov, Ruchayskiy, arXiv:0710.4922 [astro-ph].
- DM caustics and indirect detection: Caustics relevant only for quite extreme NFW-type distributions. Mohayee, Salati, arXiv:0801.3271 [astro-ph].

DM detection

- Constraining DM properties with INTEGRAL/SPI: No evidence for strong angular variation of flux in X—ray lines between 20 keV and 7 MeV; constrains e.g. "sterile"
 ν. Boyarsky, Malyshev, Neronov, Ruchayskiy, arXiv:0710.4922 [astro-ph].
- DM caustics and indirect detection: Caustics relevant only for quite extreme NFW-type distributions. Mohayee, Salati, arXiv:0801.3271 [astro-ph].
- Multi-wavelength analysis of WIMP annihilation at galactic center: Given known TeV γ sources, X-rays and/or radio offer best sensitivity. Regis, Ullio, arXiv:0802.0234 [hep-ph].

DM detection (cont.'d)

• WIMP-mass from direct detection experiments: Can be done model-independently with ≥ 2 positive detections.

Drees, Shan, arXiv:0803.4477 [hep-ph].

DM detection (cont.'d)

- WIMP—mass from direct detection experiments: Can be done model—independently with ≥ 2 positive detections.
 Drees, Shan, arXiv:0803.4477 [hep-ph].
- Solar ν background to direct WIMP detection: Relevant only for $\sigma_{\chi p} < 10^{-10}$ pb, $Q \lesssim 5$ keV. Vergados, Ejiri, arXiv:0805.2583 [hep-ph].

Outside developments: Experiment

Direct detection sensitivity improving quickly: Xenon, CDMS-II, COUPP, KIMS, ...

Outside developments: Experiment

- Direct detection sensitivity improving quickly: Xenon, CDMS-II, COUPP, KIMS, ...
- LHC isn't here yet, but hopefully coming!!!

Outside developments: Experiment

- Direct detection sensitivity improving quickly: Xenon, CDMS–II, COUPP, KIMS, ...
- LHC isn't here yet, but hopefully coming!!!
- PAMELA preliminary data confirm HEAT excess; Phys. Rev. (sensibly) refuses to publish theory papers on this until data are official.

Summary and Conclusions

We're still pretty sure that non-baryonic Dark Matter exists

Summary and Conclusions

- We're still pretty sure that non-baryonic Dark Matter exists
- We still don't know what it's made of

Summary and Conclusions

- We're still pretty sure that non-baryonic Dark Matter exists
- We still don't know what it's made of
- Experiment may give clues soon: LHC, GLAST, PAMELA, Xenon–100, ...