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What is the Standard Model?

The standard model of particle physics has the following key features:

• As a theory of elementary particles, it incorporates relativity and quantum
mechanics, and therefore it is based on quantum field theory.

• Its predictive power rests on the regularisation of divergent quantum
corrections and the renormalisation procedure which introduces scale–
dependent “running couplings”.

• Electromagnetic, weak, strong and also gravitational interactions are all
related to local symmetries and described by Abelian and non-Abelian
gauge theories.

• The masses of all particles are generated by two mechanisms:
confinement and spontaneous symmetry breaking.
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(1) The fields of the Standard Model

Special relativity and quantum mechanics lead to quantum field theory.
Causality requires antiparticles (see Weinberg, in GR):

A1→B1+e−
∆Q=1

(t1,~x1)

(t2,~x2)

A2+e−→B2
∆Q=−1

A2→B2+e+

∆Q=−1

(t′2,~x′
2)

(t′1,~x′
1)

A1+e+→B1
∆Q=1

Consider two systems A1 and A2 at ~x1 and ~x2; at t1, A1 emits electron and
turns into B1; at t2 > t1, electron is absorbed by A2 which turns into B2.

Watch system from moving frame with relative velocity ~v; emission still
before absorption (causality)? In boosted frame,

t′2 − t′1 = γ (t2 − t1) + γ~v (~x2 − ~x1) , γ =
1√

1 − ~v 2
;
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t′2−t′1 only negative for spacelike distances, i.e. (t2 − t1)
2−(~x1 − ~x2)

2
< 0,

not possible in special relativity; within classical physics, causality is OK.

In quantum mechanics, uncertainty relation leads to “fuzzy” light cone,
non-zero propagation probability of electron for slightly spacelike distances,

(t2 − t1)
2 − (~x1 − ~x2)

2
& − ~

2

m2
.

Causality is saved by introducing antiparticles. In moving frame, emission
of positron at t′2, followed by absorption at t′1 > t′2.

In relativistic theory, particles cannot be localized below their Compton
wavelength,

∆x ≥ ~

mc
.
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For shorter distances, momentum uncertainty ∆p > mc implies
contributions from multiparticle states. Corresponding Fock space,

vacuum: |0〉 , a(k)|0〉 = b(k)|0〉 = 0

one-particle states: a†(k)|0〉 , b†(k)|0〉
two-particle states: a†(k1)a

†(k2)|0〉 , a†(k1)b
†(k2)|0〉 , b†(k1)b

†(k2)|0〉
...

Dynamics conveniently described by means of field operators,

φ(x) =

∫
dk

(
e−ikxa(k) + eikxb†(k)

)
.

→ Lagrange formalism, canonical quantisation, path integral methods,...
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The Standard Model: a chiral gauge theory

The SM is theory of fields with spins 0, 1
2 and 1. The fermions (matter

fields) can be viewed as big vector containing left-handed spinors only,

ΨT
L =

(
qL1, u

c
R1, e

c
R1, d

c
R1, lL1, (n

c
R1)︸ ︷︷ ︸

1st family

, qL2, . . .︸ ︷︷ ︸
2nd

, . . . , (nc
R3)︸ ︷︷ ︸

3rd

)
,

with quarks and leptons, in threefold family replication; quarks are triplets
of colour ( index α = 1, 2, 3); left-handed quarks and leptons are doublets
of weak isospin,

qα
Li =

(
uα

Li

dα
Li

)
lLi =

(
νLi

eLi

)
,

with family index i = 1, 2, 3; evidence for right-handed neutrino nR because
of neutrino masses deduced from neutrino oscillation experiments (?)
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L and R denote left- and right-handed fields, eigenstates of the chiral
projection operators PL or PR; c indicates charge conjugate field
(antiparticle); note: charge conjugate of right-handed field is left-handed,

PLψL ≡ 1 − γ5

2
ψL = ψL , PLψ

c
R = ψc

R , PLψR = PLψ
c
L = 0 ,

PRψR ≡ 1 + γ5

2
ψR = ψR , PRψ

c
L = ψc

L , PRψL = PRψ
c
R = 0 .

All fields in big column vector of fermions are chosen left-handed, altogether
48 chiral fermions! Since left- and right-handed fermions carry different
weak isospin, the SM is a chiral gauge theory. Threefold replication of
quark-lepton families: puzzle to be explained by physics beyond the SM.

The spin-1 particles are the gauge bosons whose exchange yields the
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fundamental interactions in the SM,

GA
µ , A = 1, . . . , 8 : gluons of strong interactions

W I
µ , I = 1, 2, 3 ; Bµ : W and B bosons of electroweak interactions ,

associated with the local symmetry group

GSM = SU(3)C × SU(2)W × U(1)Y ,

where C, W , and Y denote colour, weak isospin and hypercharge.

Coupling of vector fields (big matrix Aµ, includes generators of gauge group)
to fermions via covariant derivative Dµ (cf. GR),

DµΨL = (∂µ1 + gAµ)ΨL ;
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self-coupling of gauge bosons from field strength,

Fµν = − i

g
[Dµ, Dν] .

Final, crucial ingredient of SM is the Higgs field Φ, only spin-0 field in the
theory, doublet of weak isospin. It couples left- and right-handed fermions
together and generates all mass terms! Full SM Lagrangean has rather
simple structure

L = −1

2
tr [FµνF

µν] + ΨLiγµDµΨL + tr
[
(DµΦ)

†
DµΦ

]

+µ2 Φ†Φ − 1

2
λ

(
Φ†Φ

)2
+

(
1

2
ΨT

LChΦΨL + h.c.

)
,

with matrix h of Yukawa couplings. All couplings are dimensionless,
all masses are generated via the Higgs mechanism, which gives vacuum
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expectation value to Higgs field,

〈Φ〉 ≡ v = 174 GeV ;

Higgs boson likely to be discovered at the LHC.

Phenomenology

SM Lagrangean describes successfully all areas of particle physics:

• SU(3) subgroup corresponds to QCD, theory of strong interactions; most
important phenomena: asymptotic freedom and confinement; quarks and
gluons appear as free particles at short distances, probed in deep-inelastic
scattering, but are confined into mesons and baryons at large distances.
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• SU(2) × U(1) subgroup describes electroweak sector of SM; broken to
the U(1)em of QED by the Higgs mechanism, leading to massive W and
Z bosons responsible for charged and neutral current weak interactions.

• Yukawa interaction term includes different pieces for quarks and leptons:

1

2
ΨT

LChΦΨL = hu ijūRiqLjΦ + hd ijd̄RiqLjΦ̃

+ he ijēRilLjΦ̃ + hn ijn̄RilLjΦ ,

with family indices i, j = 1, 2, 3, and Φ̃a = ǫabΦ
∗
b . Higgs vacuum

expectation value 〈Φ〉 = v generates mass terms; ‘misalignement’ of up-
type- and down-type-quarks leads to CKM matrix and flavour physics;
last two terms yield lepton masses and neutrino mixings.
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(2) Why we believe in quantum field theory

Perturbative expansion is most impressive !! Also non-perturbative methods
[lattice gauge theory] very successful. Do interacting quantum field theories
in four dimensions exist ??

Classical example: anomalous magnetic moment of the electron (Schwinger

1948)

p p′

q µ

=

p p′

q µ

+

p p′k

q µ

+ · · ·

The electromagnetic current is decomposed via the Gordon identity into
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convection and spin currents,

u(p′)γµu(p) = u(p′)

(
(p+ p′)µ

2m
+

i

2m
σµν (p′ − p)ν

)
u(p) .

First term: flow of charged particles, same as for scalar particles; second
term: spin current, relevant for magnetic moment; Landé factor of electron
is ge = 2. One-loop vertex correction,

ieΓµ(p, q) = (−ie)
3
∫

d4k

(2π)
4

−igρσ

k2 + iε
γρ i (/p′ − /k +m)

(p′ − k)
2 −m2 + iε

γµ

× i (/p− /k +m)

(p− k)
2 −m2 + iε

γσ .

After some manipulations, finite result, expressed in terms of fine structure
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constant α = e2/ (4π),

ieu(p′)Γµu(p) = +ieu(p′)

(
α

2π

i

2m
σµνqν + · · ·

)
u(p) ;

dots represent contributions not ∝ σµνqν. Beyond one loop, divergencies
and renormalisation required.

Comparison with Gordon decomposition gives one-loop correction to Landé
factor,

ge = 2
(
1 +

α

2π

)
,

i.e. anomalous magnetic moment ae = (ge − 2)/2.

Today: three loops known analytically, four loops numerically (success story
over 50 years); agreement between theory and experiment most impressive:
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aexp
e = (1159652185.9 ± 3.8) · 10−12 ,

ath
e = (1159652175.9 ± 8.5) · 10−12 ,

cornerstone of quantum field theory [Note: QED is inconsistent theory !]

Further tests of QFTH: more high-order calculations in QED; electroweak
theory: non-Abelian gauge theory, precision analysis of LEP data,
expectations for LHC, in particular Higgs boson mass; QCD: higher-order
calculations of DIS, heavy quark physics, jets, parton evolution etc (but less
clean).
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(3) Divergencies and renormalisation

In the perturbative expansion ultraviolet divergencies occur, which require
regularisation and renormalisation; typical one-loop integral, evaluated in
d = 4 − ǫ dimensions (regularisation):

µǫ

∫
d4kE

(2π)
4

1

(k2
E + C)

2 =
µǫΓ

(
2 − d

2

)

(4π)d/2 Γ(2)

1

C2−d/2
=

1

8π2

1

ǫ
+ · · ·

p
p − k

k

p = −iΣ(p)

(a) Electron self-energy

µ ν
qq

p + q

p
= −iΠµν (q)

(b) Vacuum polarisation

Example: vacuum polarisation, second rank tensor; requirement of gauge
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invariance,

qµΠµν (q) = 0 ,

together with Lorentz invariance,

Πµν (q) =
(
gµνq

2 − qµqν
)
Π

(
q2

)
,

yields scalar quantity Π(q2) which has divergent part,

Π
(
q2

)
=

2α

3π

1

ǫ
+ O(1) .

Renormalisation: divergencies can be absorbed into “bare” fields and “bare”
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parameters; they are not observable. Explicitly, for QED:

L = −1

4
(∂µA0 ν − ∂νA0 µ)

(
∂µA0 ν − ∂νA0 µ

)

+ψ0 (γµ (i∂µ − e0A0 µ) −m0)ψ0 .

“Renormalised fields” Aµ and ψ and “renormalised parameters” e and m
are obtained from bare ones by multiplicative rescaling,

A0 µ =
√
Z3Aµ , e0 =

Z1

Z2

√
Z3

µ2−d/2e . . .

Note: coupling, electron mass and fields now depend on mass parameter
µ, e = e(µ),....
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QED Lagrangean in terms of renormalized fields and parameters,

L = −1

4
(∂µAν − ∂νAµ) (∂µAν − ∂νAµ) + ψ (γµ (i∂µ − eAµ) −m)ψ + ∆L ,

where ∆L contains the divergent counterterms,

∆L = − (Z3 − 1)
1

4
FµνF

µν + (Z2 − 1)ψi/∂ψ

− (Zm − 1)mψψ − (Z1 − 1) eψ /Aψ .

Vacuum polarisation now has two contributions to O (α),

+ = −i
(
gµνq

2 − qµqν
) (

2α

3π

1

ǫ
+ (Z3 − 1) + O (1)

)
,
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Result finite for the choice

Z3 = 1 − 2α

3π

1

ǫ
+ O (1) .

After absorbtion of divergences into renormalised parameters and fields,
one can take limit ǫ → 0. The theory yields well-defined relations between
physical observables. Divergencies can be removed to all orders in loop
expansion for renormalisable theories! QED and the standard model belong
to this class. Proof is highly non-trivial, major achievement in quantum
field theory!
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Running couplings in QED and QCD

Contrary to bare coupling e0, renormalised coupling e(µ) depends on
renormalisation scale µ (use Ward identity Z1 = Z2),

e0 =
Z1

Z2

√
Z3

µ−2+d/2e(µ) = e(µ)µ−ǫ/2Z
−1

2
3 ,

Remarkably, scale dependence is determined by divergencies! Expand in ǫ
and e(µ) (use α = e2/(4π)),

e0 = e(µ)
(
1 − ǫ

2
lnµ+ · · ·

)(
1 +

1

ǫ

α

3π
+ · · ·

)

= e(µ)

(
1

ǫ

e2(µ)

12π2
+ 1 − e2(µ)

24π2
lnµ+ O

(
ǫ, e4(µ)

))
;
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differentiation with respect to µ,

0 = µ
∂

∂µ
e0 = µ

∂

∂µ
e− e3

24π2
+ O

(
e5

)
,

gives renormalisation group equation,

µ
∂

∂µ
e =

e3

24π2
+ O

(
e5

)
≡ β(e) ,

with β-function

β(e) =
b0

(4π)2
e3 + O

(
e5

)
, b0 =

2

3
.
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Integration yields running coupling in terms of coupling at reference scale
µ1,

α(µ) =
α (µ1)

1 − α (µ1)
b0

(2π) ln µ
µ1

;

since b0 > 0, coupling increases with µ until it approaches the Landau pole
where perturbation theory breaks down!

What is the meaning of a scale dependent coupling? For physical quantities,
e.g. scattering amplitude at momentum transfer q2, perturbative expansion
generates terms ∝ e2(µ) log

(
q2/µ2

)
. Hence, expansion unreliable unless

one chooses µ2 ∼ q2. Running coupling e2
(
q2

)
therefore represents effective

interaction strength at momentum (or energy) scale q2 or, correspondingly,
at distance r ∼ 1/q.

In QED, because of positive β function, effective coupling strength decreases
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at large distances; effect of “vacuum polarisation”: electron-positron pairs
from the vacuum screen bare charge at distances larger than electron
Compton wavelength. In Thompson limit, α(0) = 1

137, increases to
α
(
M2

Z

)
= 1

127 [important input in electroweak precision tests, hints for
“new physics”].

Running Coupling in QCD

Contributions to running coupling in non-Abelian gauge theories, in
particular QCD:

+ + + ; Z3 .
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Renormalised coupling can be defined as in QED,

g0 =
Z1

Z2

√
Z3

µ−2+d/2 g .

Scale dependence from coefficients of 1/ǫ-divergences, depend on number
of colours (N2

c − 1) and flavous (Nf),

µ
∂

∂µ
g =

b0

(4π)
2g

3 + O
(
g5

)
, b0 = −

(
11

3
Nc −

4

3
Nf

)
.

Coefficient negative for Nf < 11Nc/4, i.e. QCD !! Coupling then decreases
at high momentum transfers or short distances: asymptotic freedom. As
a consequence, in deep-inelastic scattering quarks inside proton quasi-free
particles → parton model, basis for treatment of collisions at the LHC!

Coupling scale µ can be expressed in terms of coupling at reference scale
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µ1, e.g. µ1 = mZ,

α(µ) =
α (µ1)

1 + α (µ1)
|b0|
(2π) ln µ

µ1

.

Analogue of Landau pole now at small µ, i.e. large distances. QCD with
Nc = 3 and Nf = 6: pole at “QCD scale” µ ∼ ΛQCD ≃ 300 MeV. Gluons
and quarks then strongly coupled and colour confined. Size and masses of
hadrons,

rhad ∼ Λ−1
QCD ∼ 0.7 fm , mproton ∼ 3 ΛQCD ∼ 1 GeV .

Origin of mass of ordinary matter mostly non-perturbative !!
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(4) Higgs sector and supersymmetry

All masses in the SM are generated by Higgs mechanism, based on effective
potential which allows “spontaneous symmetry breaking”,

L = (DµΦ)
†
(DµΦ) − V

(
Φ†Φ

)
,

DµΦ =

(
∂µ + igWµ − i

2
g′Bµ

)
Φ ,

V
(
Φ†Φ

)
= −µ2 Φ†Φ +

1

2
λ

(
Φ†Φ

)2
, µ2 > 0 ;

potential has minimum away from origin, at Φ†Φ = v2 ≡ µ2/λ, which
defines the vacuum. In unitary gauge,

Φ =

(
0

v + 1√
2
H(x)

)
, H = H∗ .
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The Higgs Lagrangean generates all mass terms,

L =
λ

2
v4

+
1

2
∂µH ∂µH − λv2H2 +

λ

2
vH3 +

λ

8
H4

+
1

4

(
v +

1√
2
H

)2 (
W 1

µ,W
2
µ,W

3
µ, Bµ

)



g2 0
0 g2 0

0 g2 gg′

gg′ g′2







W 1 µ

W 2 µ

W 3 µ

Bµ


 ;

first term: vacuum energy density (?), then Higgs and vector boson masses:

• W±: M2
W = 1

2g
2v2; Z: M2

Z = 1
2

(
g2 + g′2

)
v2; γ: Mγ = 0 ,

• Higgs: m2
H = 2λv2.
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Higgs mass bounds

Most important quantity, for LHC and extrapolations beyond: Higgs mass!
Current experimental bounds:

• Higgs not seen at LEP: mH > 114 GeV.

• Higgs contributes to radiative corrections, ρ-parameter etc Global fit to
precision measurements (see Figure) summarised in blue-band plot (small
plots:1997, 2001, 2003, 2005; big plot 2006); present 95% confidence
level upper bound:

mH < 185 GeV .

Note: loop corrections strongly dependent on top mass (main reason
for variations in early years).
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Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02767

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.743

AfbA0,l 0.01714 ± 0.00095 0.01643

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1480

RbRb 0.21629 ± 0.00066 0.21581

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1037

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1480

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.404 ± 0.030 80.376

ΓW [GeV]ΓW [GeV] 2.115 ± 0.058 2.092

mt [GeV]mt [GeV] 172.5 ± 2.3 172.9

Global fit to electroweak precision data.
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Theoretical bounds on the Higgs mass arise in SM from two
consistency requirements: (non-)triviality and vacuum stability; in minimal
supersymmetric standard model (MSSM) the Higgs self-coupling is given
by gauge couplings, which yields the upper bound mH . 135 GeV.

Theoretical mass bounds follow from scale dependence of couplings; most
relevant: quartic Higgs self-coupling λ and top quark Yukawa coupling
ht = mt/v; coupled system of renormalisation group equations:

µ
∂

∂µ
λ(µ) =

1

(4π)2
(
12λ2 − 12h4

t + . . .
)

= βλ(λ, ht) ,

µ
∂

∂µ
ht(µ) =

ht

(4π)
2

(
9

2
h2

t − 8g2
s + . . .

)
= βλ(λ, ht) ;

ht decreases with increasing µ, behaviour of λ(µ) depends on initial value
λ(v), i.e., on the Higgs mass.
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Consistency of SM from electroweak scale v up to some high-energy cutoff
Λ, yields conditions for running couplings in range v < µ < Λ:

• Triviality bound: λ(µ) < ∞; if λ would hit Landau pole at some scale
µL < Λ, finite value λ(µL) would require λ(v) = 0, i.e., theory would be
“trivial”.

• Vacuum stability bound: λ(µ) > 0; if λ would become negative, Higgs
potential would be unbounded from below anymore → electroweak
vacuum no longer ground state!

These requirements define allowed regions in the mH-mt–plane as function
of cutoff Λ; Higgs mass range for known top mass and Λ ∼ ΛGUT ∼
1016 GeV,

130 GeV < mH < 180 GeV .

33



(c)

M
H

[G
e

V
/c

2
]

600

400

500

100

200

300

0
3 5 7 9 11 13 15 17 19

log10
Λ [GeV]

Triviality

EW vacuum is absolute minimum

EW
Precision

Λ
(d)

How far should we extrapolate beyond the electroweak scale?

34



Attractive extension of SM: SUPERSYMMETRY, in particular the ‘minimal’
supersymmetric SM (MSSM); number of fields are doubled:

SM , {Φi} → MSSM, {Φia} ,

where i = q, l,W, g, γ, . . . and

a = 1 : old particles , pi ,

a = 2 : new (s)particles , p̃i ;

improves ultraviolet behaviour, attractive theoretical structure; MSSM has
two Higgs doublets; rich phenomenology at LHC (already in RPP since
many years, conferences SUSY0x,...); phenomenological problems at low
energies: proton decay, flavour changing neutral curents, dipole moments,
gravitino problem in cosmology...(?)
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Supersymmetry stabilizes Higgs vacuum expectation value v w.r.t. radiative
corrections, hence in MSSM supersymmetry breaking related to electroweak
mass scale,

∆m2
susy = m2

p̃ −m2
p ∼ v2 .

Predictions: spectrum of (s)particles with masses in the range 100 GeV -
2 TeV; could be discovered and studied at LHC; mass spectrum depends on
mechanism of supersymmetry breaking.

also important: precision measurements of low energy processes, in
particular µ → eγ: BR > 10−14 for large class of models, could
be discovered in near future at PSI; attractive dark matter candidates;
unification of gauge couplings,...(already SM impressive)...
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(5) Unification and Higher Dimensions

Grand unified theories (GUTs) are natural extension of the standard model;
quarks and leptons form SU(5) multiplets (Georgi,Glashow),

10 = (qL, u
c
R, e

c
R) , 5

∗ = (dc
R, lL) , (1 = νR) ,

or SU(4)×SU(2)×SU(2) multiplets (Pati,Salam),

(4,2,1) = (qL, lL) , (4∗,1,2) = (uc
R, d

c
R, ν

c
R, e

c
R) ;

all quarks and leptons of one generation are unified in a single multiplet in
the GUT group SO(10),

16 = 10 + 5
∗ + 1 = (4,2,1) + (4∗,1,2) .
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Important hint for unification, in addition to gauge coupling unification:
small neutrino masses; simple explanation by seesaw mechanism via mixing
(mD = hνv) with heavy right-handed neutrinos (M),

mν = −mD
1

M
mT

D .

Estimate of largest light-neutrino mass, with M ∼ ΛGUT ∼ 1015 GeV,

m3 ∼ v2

M
∼ 0.01 eV ,

remarkably consistent with results from neutrino oscillations,
√

∆m2
atm ∼

0.05 eV and
√

∆m2
sol ∼ 0.008 eV. Are we probing physics at the GUT scale

ΛGUT ∼ 1015 GeV ?!
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GUT models in four dimensions (4D) problematic; attractive alternative:
supergravity theories in five or six dimensions (simplest possibility: orbifold
compactifications); GUT symmetry breaking at fixed points (4D ‘branes’),
yields automatically required doublet-triplet splitting of Higgs fields.

Example: SO(10) gauge theory in six dimensions; standard model gauge
group from intersection of Georgi-Glashow and Pati-Salam

GGG GG PS

SO(10)

SM’
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The breaking is localized at different points in the extra dimensions, O,
OPS, OGG, Ofl, with standard model group in four dimensions,

Ofl

OPS

[G    ]GG
[G  ]fl

[G   ]PS[SO(10)]

OGG

OI

consequences: geometrical picture of flavour physics, specific predictions
for proton decay modes (different from 4D),...; but only non-renormalisable
effective theory...; group theory and supersymmetry lead to string theory!
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Exceptional coset-spaces for quarks and leptons

interesting theoretical structure, leads to supersymmetric σ-models, relevant
for some extensions of SM

42



Exceptional unification group E8×E8 beautifully realized in heterotic string;
semi-realistic compactifications on Calabi-Yau manifolds, orbifolds...; further
compactifications with Wilson lines: many models ‘similar to’ SM,...., but
not the standard model!

Fundamental problem: huge number of vacua in string theory,

Nvac = 10X,

with X = 1500 (Lerche, Lüst, Schellekens ’87) or X = 500 (Bousso, Polchinski ’00) or ... ?

Recent, interesting approaches to find realistic string vacua involve
compactifications on Calabi-Yau spaces with vector bundles, intersecting
D-brane models, F-theory,...., active field of research; intermediate step of
unification helpful to find realistic vacua?!
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Heterotic string with local grand unification

Orbifold GUTs only effective field theories with limited predictivity,
embedding in heterotic string? Compactifications on anisotropic orbifolds
yields O(100) models with standard model gauge group and massless
spectrum, without exotics: ‘mini-landscape’, considerable work of several
groups during past four years.

Qualitative features:

• Gauge symmetry breaking, matter and Higgs sector, and scale of
supersymmetry breaking are related (big puzzle!)

• Hierarchical Yukawa couplings à la Froggatt-Nielsen

• top-quark singled out, Yukawa coupling from 6D gauge coupling, 3rd
‘family’ from ‘split multiplets’.
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Heterotic SU(6) model in six (+ four) dimensions

ΛG2

0

1

2

ΛSU(3)
(0, 0)

(0, 1)

(1, 0)

(1, 1)

ΛSO(4)
SU(6)

9 × (6 ⊕ 6̄)
⊕20SU(5) ×U(1)

X

5̄ ⊕ 10

SU(5) ×U(1)
X

5̄ ⊕ 10

SU(2) × SU(4)

exoti
s
SU(2) × SU(4)exoti
s

Local SU(5) × U(1)X symmetry at GUT fixed points; matter: 2 localized
families, 1 ‘family’ from 2 split bulk families; Higgs: split bulk fields
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Gauge-top Yukawa unification

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
log10 HΜ�GeVL

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Α
i

Α3

Α2

Α1

Αt

Qualitative picture of 4D gauge couplings and top-Yukawa coupling, all
given by 6D gauge coupling; αi = g2

i /(4π), αt = Y 2
t /(4π) with gi = Yt at

the GUT scale (normalization of kinetic terms!)

46



Expectations on the eve of the LHC

New strong interactions at the LHC (?)

• Technicolour, composite quarks and leptons, little Higgs, littlest Higgs...

• Strong gravity at TeV scale, Randall-Sundrum scenario, large extra
dimensions, ‘mini-black holes’, ...

Weakly coupled theory at high energies,

• Unification, hints: symmetries and particle content of standard model,
smallness of neutrino masses and seesaw mechnism, approximate
unification of gauge couplings

• Supersymmetry, hints: ‘precise’ unification of gauge couplings,
cosmologically viable candidates of dark matter (WIMP, gravitino,...)
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• Small Extra Dimensions: R ∼ 1/MGUT? Stabilization mechanism?
Connection with supersymmetry breaking and inflation? Vacuum energy
density ρvac ∼ µ2

SUSYM
2
GUT ≪M4

GUT? Additional singlets?

0.0

0.5Τ1
0.4

0.6

0.8

1.0

Τ2

V A

V
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Physics at the LHC:

• Discovery of Higgs and supersymmetry

• Determination of Higgs and top masses and couplings; departures from
(MS)SM?

• Discovery of LSP, consistency with Dark Matter?

• Determination of supersymmetry breaking mechanism, consistent with
unification?

• Dynamics of compactification, additional singlets with masses O(m3/2),
remnant of vacuum degeneracy; discovery in late decays of superparticles?
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