Neutrino oscillations and supernovae

Amol Dighe

Department of Theoretical Physics Tata Institute of Fundamental Research

UniverseNet school, Oxford, UK, 22-26 September 2008

Sac

Contents

Lecture 1

- Atmospheric neutrino puzzle
- Solar neutrino puzzle
- Our current understanding of neutrino mixing
- Explosion of a core collapse supernova
- MSW resonances inside the supernova

2 Lecture 2

- Review of the SN explosion
- Nonlinear "collective" effects on neutrino oscillations
- Combining collective effects with MSW resonances

(日) (日) (日) (日) (日) (日) (日)

• Observable signals at the detectors

Neutrino sources

Spectrum of neutrino sources

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

• Solar ν flux : ~ 66 billion / cm² / sec ~ 10¹²/palm/sec

- Thickness of lead shielding needed to stop solar neutrinos: 100 light years
- Size of Super-Kamiokande: 40 kiloton \sim this hall, with about 10 times the height
- Number of neutrinos (solar + atmospheric) detected at SK per day: $~\lesssim 10$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Solar ν flux : ~ 66 billion / cm² / sec ~ 10¹²/palm/sec
- Thickness of lead shielding needed to stop solar neutrinos: 100 light years
- Size of Super-Kamiokande: 40 kiloton \sim this hall, with about 10 times the height
- Number of neutrinos (solar + atmospheric) detected at SK per day: $~\lesssim 10$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

- Solar ν flux : ~ 66 billion / cm² / sec ~ 10¹²/palm/sec
- Thickness of lead shielding needed to stop solar neutrinos: 100 light years
- Size of Super-Kamiokande: 40 kiloton ~ this hall, with about 10 times the height
- $\bullet\,$ Number of neutrinos (solar + atmospheric) detected at SK per day: $\,\lesssim\,$ 10

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)
 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

- Solar ν flux : ~ 66 billion / cm² / sec ~ 10¹²/palm/sec
- Thickness of lead shielding needed to stop solar neutrinos: 100 light years
- Size of Super-Kamiokande: 40 kiloton \sim this hall, with about 10 times the height
- Number of neutrinos (solar + atmospheric) detected at SK per day: ≤ 10

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)
 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

Outline

Lecture 1

• Atmospheric neutrino puzzle

- Solar neutrino puzzle
- Our current understanding of neutrino mixing
- Explosion of a core collapse supernova
- MSW resonances inside the supernova

2 Lecture 2

- Review of the SN explosion
- Nonlinear "collective" effects on neutrino oscillations
- Combining collective effects with MSW resonances

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

• Observable signals at the detectors

Neutrinos from cosmic rays

- $\pi^+ \to \mu^+ + \nu_\mu$
- $\mu^+ \rightarrow \mathbf{e}^+ + \nu_{\mathbf{e}} + \bar{\nu}_{\mu}$
- " ν_{μ} " flux = 2× " ν_{e} " flux
- "Down" flux = "Up" flux

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Zenith angle dependence

Missing muon neutrinos !

< ロ > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 図 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Solution through "vacuum oscillations"

• $H = \sqrt{p^2 + m^2} \approx p + m^2/(2E)$

• Effective Hamiltonian (2 \times 2):

$$H = \frac{1}{2E} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} m_1^2 & 0 \\ 0 & m_2^2 \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$
$$= \frac{m_2^2 + m_1^2}{2E} + \frac{1}{4E} \begin{pmatrix} -\Delta m^2 \cos 2\theta & \Delta m^2 \sin 2\theta \\ \Delta m^2 \sin 2\theta & \Delta m^2 \cos 2\theta \end{pmatrix}$$

- Eigenvalues: $\frac{m_1^2}{2E}, \frac{m_2^2}{2E}$
- Survival probability

$${\sf P}(
u_{\mu}
ightarrow
u_{\mu}) = 1 - \sin^2 2 heta \sin^2 \left(rac{\Delta m^2 L}{4E}
ight)$$

 $\Delta m^2 \equiv m_2^2 - m_1^2$

Precession of the polarization vector

- Density matrix $\rho = P_0/2 + \vec{P} \cdot \vec{\sigma}$
- Half-angle of precession $= \theta = mixing$ angle
- Different energies: same cone, different precession speeds

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Solution of the atmospheric neutrino puzzle

 $\Delta m_{
m atm}^2 \approx (1.3-3.4) \times 10^{-3} \, {
m eV}^2$ Mixing angle $\theta_{
m atm} \approx 36^\circ - 54^\circ$

Outline

Lecture 1

- Atmospheric neutrino puzzle
- Solar neutrino puzzle
- Our current understanding of neutrino mixing
- Explosion of a core collapse supernova
- MSW resonances inside the supernova

2 Lecture 2

- Review of the SN explosion
- Nonlinear "collective" effects on neutrino oscillations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Combining collective effects with MSW resonances
- Observable signals at the detectors

How the Sun shines

- Nuclear fusion reactions: mainly $4_1^1 H \rightarrow 2^4 He + 2e^+ + 2\nu_e$
- Light cannot be produced unless neutrinos are produced !!
- Davis-Koshiba Nobel prize 2002

Sun: now and then

Sun in neutrinos: 8 minutes ago

Angular size $\sim 20^\circ$

Sun in photons: a few million years ago

Angular size $\sim 1^{\circ}$

Nuclear reactions inside the Sun

The solar neutrino spectra

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆ ◆ ◆ ●

Mystery of missing solar neutrinos

200

Solar ν_e convert to ν_μ and ν_τ

• $\nu_e D \rightarrow p p e^-$ • $\nu_{e,\mu,\tau} e^- \rightarrow \nu_{e,\mu,\tau} e^-$ • $\nu_{e,\mu,\tau} D \rightarrow n p \nu_{e,\mu,\tau}$

< ロ > < 同 > < 回 > < 回 >

- 32

• ν_e oscillate into ν_μ and ν_τ

$2-\nu$ level crossing: MSW resonance

Precession picture of MSW resonance

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○三 のへぐ

Adiabaticity at a resonance

Adiabatic resonance

(日) (日) (日) (日) (日) (日) (日)

 P_f depends on: Δm^2 , mixing angle θ_{\odot} , density profile

Survival probability:

$$P(
u_e
ightarrow
u_e) pprox P_f \cos^2 heta_{\odot} + (1 - P_f) \sin^2 heta_{\odot}$$

No oscillations ! (Mass eigenstates have decohered)

 $\Delta m_{\odot}^2 \approx (7.2 - 9.5) \times 10^{-5} \text{ eV}^2$ Mixing angle $\theta_{\odot} \approx 28^{\circ} - 36^{\circ}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

Lecture 1

- Atmospheric neutrino puzzle
- Solar neutrino puzzle
- Our current understanding of neutrino mixing
- Explosion of a core collapse supernova
- MSW resonances inside the supernova

2 Lecture 2

- Review of the SN explosion
- Nonlinear "collective" effects on neutrino oscillations
- Combining collective effects with MSW resonances

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

• Observable signals at the detectors

• $\nu_{e}, \nu_{\mu}, \nu_{\tau}$ mix among each other

- Atmospheric neutrinos:
 - $\Delta m_{\rm atm}^2 \approx 2 \times 10^{-3} \ {\rm eV}^2, \, \theta_{\rm atm} \approx 45^\circ$
- Solar neutrinos:
 - $\Delta m_\odot^2 pprox 8 imes 10^{-5} \, {
 m eV^2}, \, heta_\odot pprox 32^\circ$
- Reactor neutrinos:

the "third" angle: very small ($\theta_{13} < 12^{\circ}$, may even be zero).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- $\nu_{e}, \nu_{\mu}, \nu_{\tau}$ mix among each other
- Atmospheric neutrinos:

 $\Delta m_{\rm atm}^2 pprox 2 imes 10^{-3} \ {
m eV}^2, \, \theta_{
m atm} pprox 45^\circ$

- Solar neutrinos: $\Delta m_{\odot}^2 \approx 8 \times 10^{-5} \text{ eV}^2, \theta_{\odot} \approx$
- Reactor neutrinos:

the "third" angle: very small ($\theta_{13} < 12^{\circ}$, may even be zero).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- $\nu_{e}, \nu_{\mu}, \nu_{\tau}$ mix among each other
- Atmospheric neutrinos:

 $\Delta m_{\rm atm}^2 \approx 2 \times 10^{-3} \ {\rm eV^2}, \, \theta_{\rm atm} \approx 45^\circ$

- Solar neutrinos: $\Delta m_{\odot}^2 \approx 8 \times 10^{-5} \text{ eV}^2, \ \theta_{\odot} \approx 32^{\circ}$
- Reactor neutrinos:

the "third" angle: very small ($\theta_{13} < 12^{\circ}$, may even be zero).

(日) (日) (日) (日) (日) (日) (日)

- $\nu_{e}, \nu_{\mu}, \nu_{\tau}$ mix among each other
- Atmospheric neutrinos:

 $\Delta m_{\rm atm}^2 pprox 2 imes 10^{-3} \ {
m eV}^2, \, \theta_{
m atm} pprox 45^\circ$

- Solar neutrinos: $\Delta m_{\odot}^2 \approx 8 \times 10^{-5} \text{ eV}^2, \ \theta_{\odot} \approx 32^{\circ}$
- Reactor neutrinos:

the "third" angle: very small ($\theta_{13} < 12^{\circ}$, may even be zero).

(日) (日) (日) (日) (日) (日) (日)

Open questions in neutrino physics

 Mass hierarchy: Normal or Inverted ? (red ν_e, green ν_μ, blue ν_τ)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Absolute neutrino masses
- Are there more than 3 neutrinos ?
- CP violation ? own antiparticles ? ...

Outline

Lecture 1

- Atmospheric neutrino puzzle
- Solar neutrino puzzle
- Our current understanding of neutrino mixing
- Explosion of a core collapse supernova
- MSW resonances inside the supernova

2 Lecture 2

- Review of the SN explosion
- Nonlinear "collective" effects on neutrino oscillations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Combining collective effects with MSW resonances
- Observable signals at the detectors

The onion ring structure

200

Trapped neutrinos before the collapse

• Neutrinos trapped inside "neutrinospheres" around $\rho \sim 10^{10} {\rm g/cc.}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

• Escaping neutrinos: $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$

Core collapse, shock wave, and explosion

Gravitational core collapse \Rightarrow Shock Wave

Neutronization burst

 ν_e emitted for \sim 10 ms

Cooling through neutrino emission: $\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu, \nu_\tau, \bar{\nu}_\tau$

Duration: About 10 sec Emission of most of the SN energy in neutrinos

ززز **Explosion**???

Core collapse, shock wave, and explosion

Gravitational core collapse \Rightarrow Shock Wave

・ロト ・四ト ・ヨト ・ヨト ・ ヨ

Neutronization burst:

 ν_e emitted for \sim 10 ms

Cooling through neutrino emission: $u_{e}, ar{ u}_{e}, u_{\mu}, ar{ u}_{\mu}, u_{ au}, ar{ u}_{ au}$

Duration: About 10 sec Emission of most of the SN energy in neutrinos

¿¿¿ Explosion ???
Gravitational core collapse \Rightarrow Shock Wave

Neutronization burst:

 ν_e emitted for \sim 10 ms

Cooling through neutrino emission: $\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu, \nu_\tau, \bar{\nu}_\tau$

Duration: About 10 sec Emission of most of the SN energy in neutrinos

¿¿¿ Explosion ???

Gravitational core collapse \Rightarrow Shock Wave

ヘロト ヘ戸ト ヘヨト ヘヨト

Neutronization burst:

 ν_e emitted for \sim 10 ms

Cooling through neutrino emission: $\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu, \nu_\tau, \bar{\nu}_\tau$

Duration: About 10 sec Emission of most of the SN energy in neutrinos

¿¿¿ Explosion ???

Primary fluxes and spectra

- Almost blackbody spectra, slightly "pinched"
- Energy hierarchy: $E_0(\nu_e) < E_0(\bar{\nu}_e) < E_0(\nu_x)$
- $E_0(\nu_e) \approx 10-12 \text{ MeV}$ $E_0(\bar{\nu}_e) \approx 13-16 \text{ MeV}$ $E_0(\nu_x) \approx 15-25 \text{ MeV}$

Propagation through matter of varying density

Inside the SN: flavour conversion

Collective effects and MSW matter effects

Between the SN and Earth: no flavour conversion

Mass eigenstates travel independently

Inside the Earth: flavour conversion

MSW matter effects (if detector is on the other side)

Outline

Lecture 1

- Atmospheric neutrino puzzle
- Solar neutrino puzzle
- Our current understanding of neutrino mixing
- Explosion of a core collapse supernova
- MSW resonances inside the supernova

Lecture 2

- Review of the SN explosion
- Nonlinear "collective" effects on neutrino oscillations
- Combining collective effects with MSW resonances

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

• Observable signals at the detectors

MSW Resonances inside a SN

H resonance: ($\Delta m_{ m atm}^2$, $heta_{ m 13}$), $ho \sim 10^3 extrm{--}10^4$ g/cc

- In $\nu(\bar{\nu})$ for normal (inverted) hierarchy
- Adiabatic (non-adiabatic) for $\sin^2 \theta_{13} \gtrsim 10^{-3} (\lesssim 10^{-5})$

L resonance: (Δm_{\odot}^2 , θ_{\odot}), $\rho \sim$ 10–100 g/cc

Always adiabatic, always in v

Mixing of fluxes due to MSW resonances

Mixture of initial fluxes:

$$F_{\nu_{e}} = \rho F_{\nu_{e}}^{0} + (1 - \rho) F_{\nu_{x}}^{0} ,$$

$$F_{\bar{\nu}_{e}} = \bar{\rho} F_{\bar{\nu}_{e}}^{0} + (1 - \bar{\rho}) F_{\nu_{x}}^{0}$$
(1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Survival probabilities in different scenarios:

Α	Normal	0	$\cos^2 heta_{\odot}$
В	Inverted	$\sin^2 heta_{\odot}$	0
С	Normal	$\sin^2 heta_{\odot}$	$\cos^2 heta_{\odot}$
D	Inverted	$\sin^2 heta_{\odot}$	$\cos^2 heta_{\odot}$

• "Small": $\sin^2 \theta_{13} \lesssim 10^{-5}$, "Large": $\sin^2 \theta_{13} \gtrsim 10^{-3}$.

Scenarios C and D are degenerate !!

Mixing of fluxes due to MSW resonances

Mixture of initial fluxes:

$$F_{\nu_{e}} = \rho F_{\nu_{e}}^{0} + (1 - \rho) F_{\nu_{x}}^{0} ,$$

$$F_{\bar{\nu}_{e}} = \bar{\rho} F_{\bar{\nu}_{e}}^{0} + (1 - \bar{\rho}) F_{\nu_{x}}^{0}$$
(1)

・ロト・日本・日本・日本・日本

Survival probabilities in different scenarios:

	Hierarchy	$\sin^2 \theta_{13}$	р	p
Α	Normal	Large	0	$\cos^2 \theta_{\odot}$
В	Inverted	Large	$\sin^2 heta_{\odot}$	0
С	Normal	Small	$\sin^2 heta_\odot$	$\cos^2 heta_{\odot}$
D	Inverted	Small	$\sin^2 heta_\odot$	$\cos^2 heta_{\odot}$

- "Small": $\sin^2 \theta_{13} \lesssim 10^{-5}$, "Large": $\sin^2 \theta_{13} \gtrsim 10^{-3}$.
- Scenarios C and D are degenerate !!

- Matter affects neutrino mixing and flavour conversions
- MSW resonances sensitive to mass hierarchy
- $\sin^2 \theta_{13} \gtrsim 10^{-3}$ and $\sin^2 \theta_{13} \lesssim 10^{-5}$ give distinct results

Outline

Lecture

- Atmospheric neutrino puzzle
- Solar neutrino puzzle
- Our current understanding of neutrino mixing
- Explosion of a core collapse supernova
- MSW resonances inside the supernova

2 Lecture 2

- Review of the SN explosion
- Nonlinear "collective" effects on neutrino oscillations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Combining collective effects with MSW resonances
- Observable signals at the detectors

Gravitational core collapse \Rightarrow Shock Wave

Neutronization burst

 ν_e emitted for \sim 10 ms

Cooling through neutrino emission: $\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu, \nu_\tau, \bar{\nu}_\tau$

Duration: About 10 sec Emission of most of the SN energy in neutrinos

ززز Explosion ???

Gravitational core collapse \Rightarrow Shock Wave

・ロト ・四ト ・ヨト ・ヨト ・ ヨ

Neutronization burst:

 ν_e emitted for \sim 10 ms

Cooling through neutrino emission: $u_{e}, ar{ u}_{e}, u_{\mu}, ar{ u}_{\mu}, u_{ au}, ar{ u}_{ au}$

Duration: About 10 sec Emission of most of the SN energy in neutrinos

ززز **Explosion**???

Gravitational core collapse \Rightarrow Shock Wave

Neutronization burst:

 ν_e emitted for \sim 10 ms

Cooling through neutrino emission: $\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu, \nu_\tau, \bar{\nu}_\tau$

Duration: About 10 sec Emission of most of the SN energy in neutrinos

¿¿¿ Explosion ???

Gravitational core collapse \Rightarrow Shock Wave

ヘロト ヘ戸ト ヘヨト ヘヨト

Neutronization burst:

 ν_e emitted for \sim 10 ms

Cooling through neutrino emission: $\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu, \nu_\tau, \bar{\nu}_\tau$

Duration: About 10 sec Emission of most of the SN energy in neutrinos

¿¿¿ Explosion ???

Role of neutrinos in explosion

Neutrino heating needed for pushing the shock wave

- Neutrino heating essential, but not enough
- No spherically symmetric (1-D) simulations show robust explosions
- Large scale convections required for explosion

The explosion movie

Primary fluxes and spectra

- Almost blackbody spectra, slightly "pinched"
- Energy hierarchy: $E_0(\nu_e) < E_0(\bar{\nu}_e) < E_0(\nu_x)$
- $E_0(\nu_e) \approx 10-12 \text{ MeV}$ $E_0(\bar{\nu}_e) \approx 13-16 \text{ MeV}$ $E_0(\nu_x) \approx 15-25 \text{ MeV}$

Flavor-dependence of neutrino fluxes

G. G. Raffelt, M. T. Keil, R. Buras, H. T. Janka and M. Rampp, astro-ph/0303226 T. Totani, K. Sato, H. E. Dalhed and J. R. Wilson, Astrophys. J. 496, 216 (1998)

Propagation through matter of varying density

Inside the SN: flavour conversion

Collective effects and MSW matter effects

Between the SN and Earth: no flavour conversion

Mass eigenstates travel independently

Inside the Earth: flavour conversion

MSW matter effects (if detector is on the other side)

Outline

Lecture

- Atmospheric neutrino puzzle
- Solar neutrino puzzle
- Our current understanding of neutrino mixing
- Explosion of a core collapse supernova
- MSW resonances inside the supernova

2 Lecture 2

- Review of the SN explosion
- Nonlinear "collective" effects on neutrino oscillations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Combining collective effects with MSW resonances
- Observable signals at the detectors

Nonlinear effects due to $\nu - \nu$ coherent interactions

• Large neutrino density \Rightarrow substantial $\nu - \nu$ potential $H = H_{vac} + H_{MSW} + H_{\nu\nu}$

$$\begin{array}{lll} H_{\text{vac}}(\vec{p}) &=& M^2/(2p) \\ H_{MSW} &=& \sqrt{2}G_F n_{e^-} diag(1,0,0) \\ H_{\nu\nu}(\vec{p}) &=& \sqrt{2}G_F \int \frac{d^3q}{(2\pi)^3} (1 - \cos\theta_{pq}) \big(\rho(\vec{q}) - \bar{\rho}(\vec{q})\big) \end{array}$$

 $\frac{d\rho}{dt} = i \left[H(\rho), \rho \right] \quad \Rightarrow \qquad \text{Nonlinear effects !}$

Synchronized osc. \rightarrow Bipolar osc. \rightarrow Spectral split

・ロト ・聞ト ・ヨト ・ヨト 三日

Polarization analogy in two flavours

2-v flavors : Formalism

• Expand all matrices in terms of Pauli matrices as

$$X = \frac{I}{2} + \frac{1}{2} \sum_{i=1,2,3} X_i \sigma_i$$

The following vectors result from the matrices

$$\rho_{p} \Leftrightarrow \mathbf{P}_{\omega}$$

$$H_{p}^{0} \Leftrightarrow \omega \mathbf{B}$$

$$V \Leftrightarrow \sqrt{2}G_{F}N_{e} \mathbf{L} \equiv \lambda \mathbf{L}$$

$$H_{p}^{\nu\nu} \Leftrightarrow \sqrt{2}G_{F}(n+n) \int d\omega f(\omega) \mathbf{P}_{\omega} \operatorname{sgn}(\omega) \equiv \mu \mathbf{D}$$

EOM resembles spin precession

$$\frac{d}{dr}\mathbf{P}_{\omega} = (h\omega\,\mathbf{B} + \lambda\,\mathbf{L} + \mu\,\mathbf{D}) \times \mathbf{P}_{\omega} \equiv \mathbf{H}_{\omega} \times \mathbf{P}_{\omega}$$

Analogy to a spinning top

The spinning top analogy

• Motion of the average \mathbf{P}_{ω} defined by $\mathbf{S} = \int d\omega f(\omega) \mathbf{P}_{\omega}$

• Construct the "Pendulum" vector
$$\mathbf{Q} = \mathbf{S} - \frac{\omega_{avg}}{\mu} \mathbf{B}$$

• EOMs are given by
$$\mathbf{Q} = \mu \mathbf{D} \times \mathbf{Q}$$
, $\mathbf{D} = \omega_{avg} \mathbf{B} \times \mathbf{Q}$

• Mapping to Top :
$$\mathbf{Q}/\mathbf{Q} \equiv \mathbf{r}$$
, $\mathbf{D} \equiv \mathbf{j}$, $\omega_{avg} \mu \mathbf{Q} \mathbf{B} \equiv \mathbf{g}$
 $\mu^{-1} \equiv m$, $\mathbf{D} \mathbf{Q}/\mathbf{Q} \equiv \sigma$

- EOMs now become $\mathbf{j} = m\mathbf{r} \times \mathbf{r} + \sigma \mathbf{r}$, $\mathbf{j} = m\mathbf{r} \times \mathbf{g}$
- Note that these are equations of a spinning top!!! (Hannestad, Raffelt, Sigl, Wong: astro-ph/0608695; Fogli, Lisi, Mirizzi, Marrone: hep-ph/0707.1998)

Synchronized oscillations

- ν and $\bar{\nu}$ of all energies oscillate with the same frequency
- No significant flavour change since mixing angle is small

Bipolar oscillations

- Coherent $\nu_e \bar{\nu}_e \leftrightarrow \nu_x \bar{\nu}_x$ oscillations
- A nutating top ??
- Take place in inverted hierarchy
- Even $\theta_{13} \lesssim 10^{-10}$ OK !
- Prepare neutrinos for the "spectral split"

Spectral split

- \$\bar{\nu}_e\$ and \$\bar{\nu}_x\$ spectra interchange completely
- ν_e and ν_x spectra interchange for E > E_c
- Occurs in inverted hierarchy

・ロト・日本・エー・ キャックタン

A caveat: multi-angle effects

H. Duan, G. Fuller, J. Carlson, Y. Qian, PRL 97, 241101 (2006)

 "Multi-angle decoherence" during collective oscillations suppressed by ν-ν̄ asymmetry

A.Esteban-Pretel et al., PRD76, 125018 (2007)

 "Single-angle" evolution along lines of neutrino flux works even for non-spherical geometries, as long as coherence is maintained

B.Dasgupta et al., arXiv:0805.3300

A peek into three-flavour analysis

3-v flavors : Formalism

Expand all matrices in terms of Gell-Mann matrices as

$$X = \frac{I}{3} + \frac{1}{2} \sum_{i=1-8} X_i \Lambda_i$$

The following vectors result from the matrices

$$\begin{aligned} \rho_{\rm p} &\Leftrightarrow \mathbf{P}_{\omega} \\ H_{\rm p}^{0} &\Leftrightarrow \omega \, \mathbf{B} \\ V &\Leftrightarrow \sqrt{2} G_{\rm F} N_{e} \, \mathbf{L} \equiv \lambda \, \mathbf{L} \\ H_{\rm p}^{\nu\nu} &\Leftrightarrow \sqrt{2} G_{\rm F} (n+\bar{n}) \int d\omega \, f(\omega) \, \mathbf{P}_{\omega} \, \mathrm{sgn}(\omega) \equiv \mu \, \mathbf{D} \end{aligned}$$

• EOM formally resembles spin precession

$$\frac{d}{dr}\mathbf{P}_{\omega} = (\omega \mathbf{B} + \lambda \mathbf{L} + \mu \mathbf{D}) \times \mathbf{P}_{\omega} \equiv \mathbf{H}_{\omega} \times \mathbf{P}_{\omega}$$

Synchronized oscillations: 3 flavours

Synchronized oscillations

Bipolar oscillations: 3 flavours

Bipolar oscillations

Spectral split: 3 flavours

Spectral splits

Two lepton number conservation laws : **B.D** conserved (Duan, Fuller, Qian: hep-ph/0801.1363; Dasgupta, Dighe, Mirizzi, Raffelt hep-ph/0801.1660)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Outline

Lecture

- Atmospheric neutrino puzzle
- Solar neutrino puzzle
- Our current understanding of neutrino mixing
- Explosion of a core collapse supernova
- MSW resonances inside the supernova

2 Lecture 2

- Review of the SN explosion
- Nonlinear "collective" effects on neutrino oscillations
- Combining collective effects with MSW resonances

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Observable signals at the detectors

Sequential dominance of processes

- $r \leq 200$ km: collective effects dominate
- r > 200 km: standard MSW matter effects dominate G.L.Fogli, E. Lisi, A. Marrone, A. Mirizzi, JCAP 0712, 010 (2007)

(日) (日) (日) (日) (日) (日) (日)

MSW Resonances inside a SN

H resonance: ($\Delta m_{ m atm}^2$, $heta_{ m 13}$), $ho \sim 10^3 extrm{--}10^4$ g/cc

- In $\nu(\bar{\nu})$ for normal (inverted) hierarchy
- Adiabatic (non-adiabatic) for $\sin^2 \theta_{13} \gtrsim 10^{-3} (\lesssim 10^{-5})$

L resonance: (Δm_{\odot}^2 , θ_{\odot}), $\rho \sim$ 10–100 g/cc

Always adiabatic, always in v

Fluxes arriving at the Earth

Mixture of initial fluxes:

$$F_{\nu_{e}} = \rho F_{\nu_{e}}^{0} + (1 - \rho) F_{\nu_{x}}^{0} ,$$

$$F_{\bar{\nu}_{e}} = \bar{\rho} F_{\bar{\nu}_{e}}^{0} + (1 - \bar{\rho}) F_{\nu_{x}}^{0}$$
(2)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Survival probabilities in different scenarios:

Α	Normal	0	$\cos^2 heta_{\odot}$
В	Inverted	$\cos^2 heta_{\odot}\mid 0$	$\cos^2 heta_{\odot}$
С	Normal	$\sin^2 heta_{\odot}$	$\cos^2 heta_{\odot}$
D	Inverted	$\cos^2 \theta_{\odot} \mid 0$	0

- "Small": $\sin^2 \theta_{13} \lesssim 10^{-5}$, "Large": $\sin^2 \theta_{13} \gtrsim 10^{-3}$.
- All four scenarios separable in principle !!

Fluxes arriving at the Earth

Mixture of initial fluxes:

$$F_{\nu_{e}} = \rho F_{\nu_{e}}^{0} + (1 - \rho) F_{\nu_{x}}^{0} ,$$

$$F_{\bar{\nu}_{e}} = \bar{\rho} F_{\bar{\nu}_{e}}^{0} + (1 - \bar{\rho}) F_{\nu_{x}}^{0}$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Survival probabilities in different scenarios:

	Hierarchy	$\sin^2 \theta_{13}$	р	p
Α	Normal	Large	0	$\cos^2 \theta_{\odot}$
В	Inverted	Large	$\cos^2 heta_\odot\mid$ 0	$\cos^2 heta_{\odot}$
С	Normal	Small	$\sin^2 heta_{\odot}$	$\cos^2 heta_{\odot}$
D	Inverted	Small	$\cos^2 heta_\odot\mid$ 0	0

- "Small": $\sin^2 \theta_{13} \lesssim 10^{-5}$, "Large": $\sin^2 \theta_{13} \gtrsim 10^{-3}$.
- All four scenarios separable in principle !!
Final spectra for inverted hierarchy ($F_{\nu_e}^0 > F_{\bar{\nu}_e}^0 > F_{\nu_x}^0$)

Outline

Lecture

- Atmospheric neutrino puzzle
- Solar neutrino puzzle
- Our current understanding of neutrino mixing
- Explosion of a core collapse supernova
- MSW resonances inside the supernova

2 Lecture 2

- Review of the SN explosion
- Nonlinear "collective" effects on neutrino oscillations
- Combining collective effects with MSW resonances

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Observable signals at the detectors

(Hubble image)

- Confirmed the SN cooling mechanism through neutrinos
- Number of events too small to say anything concrete about neutrino mixing
- Some constraints on SN parameters obtained

Signal expected from a galactic SN (10 kpc)

Water Cherenkov detector / IceCUBE:

- $\bar{\nu}_{e}p \rightarrow ne^{+}$: $\approx 7000 12000^{*}$
- $\nu e^- \rightarrow \nu e^-$: $\approx 200 300^*$
- $\nu_{e} + {}^{16} \text{ O} \rightarrow X + e^{-}$: $\approx 150 800^{*}$

* Events expected at Super-Kamiokande with a galactic SN at 10 kpc

Carbon-based scintillation detector:

•
$$ar{
u}_{e} p
ightarrow n e^{+}$$

• $\nu + {}^{12}C \rightarrow \nu + X + \gamma$ (15.11 MeV)

Liquid Argon detector:

•
$$\nu_e$$
 + ${}^{40}Ar \rightarrow {}^{40}K^* + e^-$

Pointing to the SN in advance

- Neutrinos reach 6-24 hours before the light from SN explosion (SNEWS network)
- $\bar{\nu}_e p \rightarrow ne^+$: nearly isotropic background
- $\nu e^- \rightarrow \nu e^-$: forward-peaked "signal"
- Background-to-signal ratio: $N_B/N_S \approx 30-50$
- SN at 10 kpc may be detected within a cone of $\sim 5^\circ$ at SK

Earth matter effects

• "Earth effect" oscillations

Presence or absence of Earth matter effects:

А	Normal	Х	\sim
В	Inverted	Х	
С	Normal		
D	Inverted	X	X

Earth matter effects

• "Earth effect" oscillations

Presence or absence of Earth matter effects:

	Hierarchy	$\sin^2 \theta_{13}$	$ u_{e}$	$\bar{\nu}_{e}$
Α	Normal	Large	Х	
В	Inverted	Large	Х	
С	Normal	Small		
D	Inverted	Small	X	X

IceCube as a co-detector with HK

- Total Cherenkov count in IceCube increases beyond statistical backround fluctuations during a SN burst F.Halzen, J.Jacobsen, E.Zas, PRD53, 7359 (1996)
- This signal can be determined to a statistical accuracy of ~ 0.25% for a SN at 10 kpc.
- The extent of Earth effects changes by 3–4 % between the accretion phase (first 0.5 sec) and the cooling phase.
- Absolute calibration not essential

AD, M. Keil, G. Raffelt, JCAP 0306:005 (2003)

Collective effects will change the ratio

IceCube as a co-detector with HK

- Total Cherenkov count in IceCube increases beyond statistical backround fluctuations during a SN burst F.Halzen, J.Jacobsen, E.Zas, PRD53, 7359 (1996)
- This signal can be determined to a statistical accuracy of ~ 0.25% for a SN at 10 kpc.
- The extent of Earth effects changes by 3–4 % between the accretion phase (first 0.5 sec) and the cooling phase.
- Absolute calibration not essential

AD, M. Keil, G. Raffelt, JCAP 0306:005 (2003)

Collective effects will change the ratio

Earth effects through Fourier Transform

$(y \equiv 25 \ MeV/E)$

ヘロマ ヘ動 マイロマー

Model independence of peak positions at a scintillator:

Collective effects will not change peak positions

Earth effects through Fourier Transform

$(y \equiv 25 \ MeV/E)$

Model independence of peak positions at a scintillator:

Collective effects will not change peak positions

Earth matter effects from two Water Cherenkovs

Robust experimental signature, thanks to Collective Effects

• Earth effects can distinguish hierarchies even for $\theta_{13} \rightarrow 0$

B.Dasgupta et al., arXiv:0802.1481

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

When shock wave passes through a resonance region (density ρ_H or ρ_L):

- adiabatic resonances may become momentarily non-adiabatic scenario A → scenario C scenario B → scenario D
- Sharp changes in the final spectra even if the primary spectra change smoothly

R. C. Schirato, G. M. Fuller, astro-ph/0205390 G. L. Fogli, E. Lisi, D. Montanino and A. Mirizzi, PRD 68, 033005 (2003)

Shock wave effects

• Time dependent spectral evolution

Kneller, Mclaughlin, Brockman, PRD77, 045023 (2008)

А	Normal	\sim	$\overline{\mathbf{A}}$
В	Inverted	Х	
С	Normal	Х	Х
D	Inverted	Х	Х

Shock wave effects

• Time dependent spectral evolution

Kneller, Mclaughlin, Brockman, PRD77, 045023 (2008)

Presence or absence of shock effects						
		Hierarchy	$\sin^2 \theta_{13}$	ν_{e}	ν _e	
	Α	Normal	Large			
	В	Inverted	Large	Х		
	С	Normal	Small	Х	X	
	D	Inverted	Small	Х	Х	

Shock wave effect on survival probabaility

The shock wave movie

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Double/single dip at a megaton water Cherenkov

Single (Double) dip in $\langle E_e \rangle$ Single (Double) peak in $\langle E_e^2 \rangle / \langle E_e \rangle^2$ for Forward (+ Reverse) shock

Double/single dip

- robust under monotonically decreasing average energy
- In ν_e ($\bar{\nu}_e$) for normal (inverted) hierarchy for sin² $\theta_{13} \gtrsim 10^{-5}$

R.Tomas et al., JCAP 0409, 015 (2004)

Collective effects \Rightarrow dip \leftrightarrow peak

Double/single dip at a megaton water Cherenkov

Single (Double) dip in $\langle E_e \rangle$ Single (Double) peak in $\langle E_e^2 \rangle / \langle E_e \rangle^2$ for Forward (+ Reverse) shock

Double/single dip

- robust under monotonically decreasing average energy
- In ν_e ($\bar{\nu}_e$) for normal (inverted) hierarchy for sin² $\theta_{13} \gtrsim 10^{-5}$

R.Tomas et al., JCAP 0409, 015 (2004)

Collective effects \Rightarrow dip \leftrightarrow peak

Tracking the shock fronts

- At $t \approx 4.5$ sec, (reverse) shock at ρ_{40}
- At $t \approx 7.5$ sec, (forward) shock at ρ_{40}
- Multiple energy bins ⇒ the times the shock fronts reach different densities of ρ ~ 10²−10⁴ g/cc

Future perspective

Theoretical challenges

- Neutrino transport inside the SN, primary spectra
- Aspects of the nonlinear effects: spectral split, multi-angle effects, decoherence, turbulent effects

Experimental challenges

- Reconstruction of ν_{θ} spectrum (liq Ar detector ?)
- Multiple megaton-class water Cherenkov detectors

Expected bonanza

- Neutrino mass hierarchy
- Upper/lower bounds on θ_{13}
- Understanding of shock wave propagation

Future perspective

Theoretical challenges

- Neutrino transport inside the SN, primary spectra
- Aspects of the nonlinear effects: spectral split, multi-angle effects, decoherence, turbulent effects

Experimental challenges

- Reconstruction of v_e spectrum (liq Ar detector ?)
- Multiple megaton-class water Cherenkov detectors

Expected bonanza

- Neutrino mass hierarchy
- Upper/lower bounds on θ_{13}
- Understanding of shock wave propagation

Future perspective

Theoretical challenges

- Neutrino transport inside the SN, primary spectra
- Aspects of the nonlinear effects: spectral split, multi-angle effects, decoherence, turbulent effects

Experimental challenges

- Reconstruction of v_e spectrum (liq Ar detector ?)
- Multiple megaton-class water Cherenkov detectors

Expected bonanza

- Neutrino mass hierarchy
- Upper/lower bounds on θ_{13}
- Understanding of shock wave propagation

・ロト・国ト・ヨト・ヨト ヨー うへの

Synchronized oscillations

Synchronized oscillation

(日) (日) (日) (日) (日) (日) (日)

- Spin is very large : Top precesses about direction of gravity
- At large $\mu \gg \varpi_{\mathsf{avg}} : Q$ precesses about B with frequency ϖ_{avg}

Bipolar oscillations

Bipolar oscillation

- Spin is not very large : Top precesses and nutates
- At large $\mu \geq \varpi_{\mathsf{avg}} : Q$ precesses + nutates about B
- Therefore S does the same
- All P_{ω} are still bound together, same EOM:

$$\frac{d}{dr}\mathbf{P}_{\omega} = (\omega \mathbf{B} + \lambda \mathbf{L} + \mu \mathbf{D}) \times \mathbf{P}_{\omega}$$

(Hannestad, Raffelt, Sigl, Wong: astro-ph/0608695; Duan, Fuller, Carlson, Qian: astro-ph/0703776)

(日) (日) (日) (日) (日) (日) (日)

Nutation = Complicated elliptic functions

• Survival probability : $\left|\left\langle \nu_{e} \left| \nu_{e}(r) \right\rangle\right|^{2} = (1 + P_{z})/2$

Spectral split

Adiabatic spectral split

- Top falls down when it slows down (when mass increases)
- If μ decreases slowly P_ω keeps up with H_ω
- As $\mu \rightarrow 0$ from its large value : \mathbf{P}_{ω} aligns with $h \omega \mathbf{B}$
- For inverted hierarchy P_{ω} has to flip, $BUT\ldots$

(日) (日) (日) (日) (日) (日) (日)