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The Holographic Principle

• Idea proposed by t’ Hooft and Susskind (mid-
1990s), that all of the information contained within 
a volume is entirely encodable onto a surface 
bounding that volume. 

• Primarily motivated by the oddity that the entropy 
of a black hole depends on its surface area and not 
its volume.  Bekenstein & Hawking (mid-1970s)
showed S = AEH/4 for black holes, which, being of 
maximally packed energy density, are presumably 
also of maximally packed entropy density.



Is the holographic principle 
consistent with vacuum inflation?

• Co-moving volume scales as a3 while co-moving surface area 
scales as a2.

• In this way, the holographic principle appears to be violated 
by cosmic inflation models that allow portions of the universe 
to be dominated by w = –1 vacuum energy for cosmologically 
significant timescales.

• For ρ ∝ a–3(1+w) to dilute rapidly enough that that the total 
energy contained within a volume that is co-moving with the 
expansion of space does not grow faster than the bounding 
surface area, we must have 3(1 + w) ≥ 1.

Thus, we have concern if the dark energy equation 
of state is stiffer than w = –2/3 (although temporary 
false vacuums seem to be allowed if they do not last too long).



But what is an appropriate enclosing 
surface to pick in cosmology?

• The event horizon?  (like a black hole?)
(but not all cosmologies have an event horizon)

• The particle horizon?
(not all cosmologies have this either)

• The Hubble volume boundary?
• The apparent horizon?



Event horizon physical properties for 
black holes and de Sitter cosmologies 

appear to be exactly identical!

Could this be due to identical physics 
in both cases?



How BH and dS event horizons are the same:
• Once the horizon is crossed, return is impossible.
• Distant observers see time dilation approaching infinity as 

the horizon is approached.  The horizon is not seen to be 
reached.

• Test particles accelerate toward the horizon.
• Surface acceleration is proportional to total horizon area.
• Distant observers see redshifts approaching infinity as the 

horizon is approached.
• The horizon bounds a region in which particles can have 

negative energy with respect to a distant observer.  Thus, 
distant observers should witness a thermal spectrum of 
particle creation emanating from the horizon.

• (Same entropy also??)



Bousso (2002)

• Demonstrated that the apparent horizon (not the 
event horizon) works as a holographic entropy bound 
in all physically realistic cases imaginable.

(Note:  The apparent and event horizons coincide in both 
black holes and in dS cosmologies.)

• Conjectured that the holographic bound might 
always be saturated at the apparent horizon.

(Note:  In spatially flat cosmologies, the apparent horizon 
is identical to the Hubble horizon at distance c/H.)



Connection to Curvature?

• In GR, acceleration toward a black hole’s 
EH happens because of spacetime 
curvature.

• Perhaps objects in our universe accelerate 
toward our cosmic EH for the same reason?



Old argument from when Einstein’s Λ was thought to be zero:

Any contributions to the vacuum energy density predicted by 
quantum field theories operating in otherwise empty and flat
spacetime must be exactly balanced by a “bare” cosmological 
constant, or some symmetry that relates the quantum 
contributions to each other is responsible for the cancellation,
resulting in an effective ρvac = 0 in the case of zero curvature.

But if flat spacetime should have Λ = 0, that would suggest
|Λ| > 0 in curved backgrounds.



What if the dark energy were related 
directly to the global curvature,       

Λ(t) ∝ |ΩK| ≡ |Ωtot – 1| ?

• Since |ΩK| is just past its maximum in cosmic history (at 
least since before inflation), Λ(t) also would have just passed a 
maximum value.

• Given the global radius of curvature, RC = (c/H)|ΩK|–1/2, 
the time-dependent Λ(t) would maintain proportionality to 
the area of the Hubble apparent horizon (for small ΩK).

• In general, |Ω – 1| ∝ (aH)–2 and, in a flat universe, H2 ∝ ρ
∝ a–3(1+w) (ρ and w being of the universe’s dominant constituent).  
H ∝ t–1 then forces an effective w = –2/3 when Λ(t) 
dominates.



Relative placement of 
the apparent and 
event horizons within 
a flat universe that is 
fully dominated by a 
component with an 
effective equation of 
state P = –(2/3)ρ, for 
which a ∝ t 2 implies 
an age-Hubble 
parameter 
relationship of t = 2/H.

rAH = c/H = ct /2

rEH = ∫t
∞

(c/a)dt΄ = ct



Toy model:  Decaying Λ(t) ∝ |ΩK| as the only 
component in an otherwise empty universe.

• Evolution under eq. of state w = – 2/3
• Assume approximately flat (small ΩK)
• Assume homogenous entropy density
• Assume saturated holographic entropy bound 

within apparent horizon, SAH = AAH/4
• Given AEH is 4 times greater than AAH, while the 

volume enclosed by the EH is 8 times greater, 
deduce that SEH = AEH/2

• Assume surface acceleration, κ, of EH is therefore 
twice as strong as a black hole of equal size,  
i.e., κΕΗ = c2/rEH = c/t. 



Now plug into Einstein’s definition:

Λ ≡ 3ä/a

Thus,  Λ(t) = 3t –2

For a = rEH = ct, the event horizon surface acceleration sets  
ä = c2/rEH = c/t.



Now plug into Einstein’s definition:

Λ ≡ 3ä/a

Thus,  Λ(t) = 3t –2

For a = rEH = ct, the event horizon surface acceleration sets  
ä = c2/rEH = c/t.

For an age of t0 = 13.7 Gyr,  Λ(t0) = 1.61 × 10–35 s–2

What is Λ measured to be in our universe today?



Now plug into Einstein’s definition:

Λ ≡ 3ä/a

Thus,  Λ(t) = 3t –2

For a = rEH = ct, the event horizon surface acceleration sets  
ä = c2/rEH = c/t.

For an age of t0 = 13.7 Gyr,  Λ(t0) = 1.61 × 10–35 s–2

What is Λ measured to be in our universe today (with ΩΛ ≅ 0.73)?

(1.2 ± 0.2) × 10–35 s–2   (!!!)



What “stuff” would have the characteristics to 
display ΩK dependence and w = – 2/3?

I suggest extremely low energy 
“immortal” virtual gravitons.

(Call them IVGs)



If massless virtual particles persist for cosmologically long times, 
their wavelengths should stretch as λ ∝ a, thus weakening their 
energies (E ∝ λ–1) such that ρ ∝ a–1 and w = –2/3.

For a massless virtual particle created near the Big Bang  
to have persisted for t0 = 13.7 Gyr, its maximum possible 
energy from the Heisenberg uncertainty condition  
Emax ~ h/t0 would be ~1.5 × 10-33 eV.

The wavelength of such a particle would exceed the 
Hubble length by a factor of ~6, in apparent violation of 
boundary conditions.

However, while spin-0 and spin-1 massless particles may 
be subject to boundary conditions at the cosmological 
horizon, the Lagrangian of spin-2 particles (gravitons) 
appears unable to maintain gauge invariance if any 
boundary conditions are set.



This suggests that virtual gravitons may persist 
in the universe indefinitely while no other virtual 
particles are permitted to do so. 

These gravitons would eventually dominate 
over radiation and matter, stimulating an 
acceleration of space (w = –2/3  ⇒ a ∝ t2).

Although virtual, the evolution of their 
energies, E ∝ a–1, renders these gravitons 
immortal in any accelerating universe           
(in which  a increases faster than t).



Critical Density of IVGs and the 
Holographic Entropy Bound

• If the universe were filled with a critical density,  
ρcrit = 3H0

2/8πG, of IVGs with average energy     
E ~ 5 × 10-34 eV, the number of IVGs enclosed within 
the apparent horizon would be N ~ 10122.

• This is remarkably close to AAH/4 ~ 2 × 10122   (!)
• Thus, a fixed entropy per graviton of O(a few) would 

saturate the holographic bound perfectly.
• The number density of IVGs would evolve according 

to nIVG ∝ (ρIVG/Emax) ∝ t –1.
• Given an AH enclosed volume ∝ t 3 with surface area 

∝ t 2, the IVGs would always and forever maintain a 
precise saturation of the holographic limit!


