Strong Neutrino-Majoron Interactions in Supernovae?

Tina Lund
UniverseNet, Oxford
September 22nd-25th 2008

Bounce to burst

- v's are trapped when $\rho > 10^{12}$ g/cm³ neutrino sphere.
- The strong interaction becomes repulsive when $\rho > \rho_{\text{nucl}} = 10^{14} \text{ g/cm}^3$. Infalling material bounces \Rightarrow shock wave moving to the outer parts of the core.
- Energy in the shock wave is spent dissociating nuclei to nucleons \Rightarrow electron capture \Rightarrow plenty of ν .
- v_e 's leave the star taking energy with them \Rightarrow neutrino burst.
- Energy loss halts shock wave turning it into an accretion shock.
- Inside the original shock formation radius we have the beginning of a NS.

[H.-Th. Janka et al.]

Neutrino sphere

- In PNS ν 's are still trapped, due to $\lambda_{mfp} < \overline{R}_{ns}$, but they diffuse to the ν -sphere in seconds.
- Some of the v_e 's streaming from the v-sphere can deposit energy in the region between the v-sphere and the shock front via CC interactions, thereby reviving the stalled shock. v_x only have NC interactions.

 Not enough energy is transfered.
- Energy needed to revive shock propagation.
- "Hot bubble": $\rho \sim 10^6 10^8$ g/cm³, T~1 MeV.

[H.-Th. Janka et al.]

Neutrino spheres

- Different spheres for different flavors due to interactions.
- Spheres are extended because $\sigma \propto E^2$.
- By changing which interactions to include and their assigned strength, you change the shape of the resulting v_x-spektra.

$$\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_\mu} \rangle$$

Fluxes and Energies

$$\langle E_{\nu_e} \rangle \sim 10 - 12 MeV$$

 $\langle E_{\nu_{\bar{e}}} \rangle \sim 12 - 18 MeV$
 $\langle E_{\nu_x} \rangle \sim 15 - 25 MeV$

 In principle observed spectra apart from neutrino oscillations between the different flavors on their way to Earth.

$$ec{
u}_{weak} = \mathcal{M} \circ ec{
u}_{mass}$$

[A. Mirizzi; T.Totani et al.]

SN1987A

- Confirmed overall understanding.
- Low statistics ⇒ time integrated spectrum
 ⇒ constrained alternative energy loss
 mechanisms.

$$\epsilon_{\rm X} < 10^{19} \, {\rm erg \, g^{-1} \, s^{-1}}$$

[G. Raffelt.]

 Comparable to energy released in neutrinos.

New particles

- Strong interactions with a massless pseudoscalar particle. "Majoron models."
- Annihilation and bremsstrahlung as representative interactions.

Coupling strengths

Neutrino-Majoron interactions

$$\sigma_J(\eta) = \frac{g^4}{128\pi} \frac{1 - \eta}{m_{\nu_\tau}^2 \eta} \left[\ln \left(\frac{1 + \sqrt{\eta}}{1 - \sqrt{\eta}} \right) - 2\sqrt{\eta} \right]$$

$$\eta \equiv 1 - 4m_{\nu_{\tau}}^2/s$$

 $\eta \equiv 1 - 4m_{\nu_{\tau}}^2/s$ A. D. Dolgov et al (1997).

 $g = 10^{-3}$ leads to $r_{dec} = 22.9$ km comparable to the CC value of 23.2 km and the NC value of 21.0 km.

$$\langle \lambda \rangle = \frac{\int \frac{c}{n_{\nu} \langle \sigma v \rangle} f_{\nu} \,\omega^{2} \,d\omega}{\int f_{\nu} \,\omega^{2} \,d\omega}$$

$$r^2 = \frac{g^4 \, \hbar^2 \, R_{NS}}{m_{\nu}^2 / c^2} 5.416 \cdot 10^{26} \, cm^{-1}$$

The Bremsstrahlung process has $\sigma \propto g^6$ and with $g = 10^{-3}$ this process can be ignored.

New spectra

- Effectively "back door" leading to similar spectra for all flavors.
- Transfer of energy to v_e and thus to the shock.

Conclusion

- Possible to transfer more energy to the shock.
- Next step; is it enough?
- MW SN may give answers.

