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Stars in f(R) gravity models

If you modify
General Relativity,

what happens to stars?

Drastic changes in structure?

...Observations?
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f(R) models

• f(R) theories:

S =
1

16πG

∫
d4x
√
−gf(R) +

∫
d4x
√
−gLm, (1)

• GR: R− 2Λ → A general function of R: f(R)

• E.g. f(R) = R− µ4/R

• Could construct models using other Lorentz invariant quantities
(RµνR

µν,∇µR∇µR, ...)

• f(R) models are a subclass of scalar-tensor theories
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f(R) models

• Why study extensions to GR?

– Observations (dark energy, dark matter)
– Theory (GR an effective theory of gravity)
– Just because it’s interesting (How ”stable”is GR?)

• Inflation models (Starobinsky 1980), eg. f(r) = R + αR2

• ”First papers on cosmological models in f(R) gravity appeared already
in 1969-1970”(Starobinsky: Disappearing cosmological constant in f(R)
gravity, arXiv: 0706.2041)
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f(R) models

• f(R) as ”geometrical dark energy”− modifying the gravity sector, not
the matter sector

• DE: the expansion of the universe seems to be accelerating
...a huge amount of suggestions giving good a(t)
→ reason some out by supplementary investigations!

(E.g. contradicting structure formation, or what is done here)

• f(R) = R− µ4

R → ”the simplest correction which becomes important at
extremely low curvatures”

(Carroll, Duvvuri, Trodden, Turner: Is cosmic speed-up due to new gravitational phy-
sics?, arXiv: astro-ph/0306438)

– Typeset by FoilTEX – 5



• Palatini vs. metric formalism

– Palatini: the connection Γρ
µν defining the Riemann tensor

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓΛ
νσ − Γρ

νλΓλ
µσ (2)

and the metric gµν are both free dynamical variables
– Metric formalism: gµν a free variable, the Levi-Civita connection

Γρ
µν =

1
2
gρσ(∂µgσν + ∂νgσµ − ∂σgµν) (3)

– Test particles fall along the extremal (shortest, ”straight”) paths on the
manifold = the affine geodesics wrt the Levi-Civita connection

– Typeset by FoilTEX – 6



Spherically symmetric solutions

• Cosmological expansion history →
the modified Friedmann equations

− But (how) does the
Schwarzschild solution change?
The interior solution, the star?
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Spherically symmetric solutions

• The general static, spherically symmetric metric + star: perfect fluid

ds2 = −eA(r)dt2 + eB(r)dr2 + r2dΩ2

+ Tµ
ν = diag(−ρ(r), p(r), p(r), p(r))

• To determine

the metric (A(r), B(r))

+ the stellar structure (ρ(r), p(r))

need to solve the gravitational field equations

= the (MODIFIED) Einstein equation
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Schwarzschild- de Sitter and TOV

• GR:

– Rµν − 1
2gµνR = 8πGTµν − Λgµν

– ∇µTµν = 0
– Exterior (Tµν = 0, r ≥ R): The Schwarzschild- de Sitter solution

ds2 = −
(
1− 2GM

r − 1
3Λr2

)
dt2 + dr2

1−2GM
r −1

3Λr2 + r2dΩ2

– Interior (r ≤ R): The Tolman-Oppenheimer-Volkoff (TOV) = eq. of the
hydrostatic equilibrium inside the star

dp(r)
dr = −(ρ(r)+p(r))(Gm(r)+4πGr3p(r))

r(r−2Gm(r)) , where m(r) =
∫ r

0
dr4πr2ρ(r)
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Schwarzschild- de Sitter and TOV

• The mass parameter m(r) defined

(grr =)eB(r) = 1
1−2Gm(r)/r

• The Schwarzschild mass M = m(R)

• The equation m(r) =
∫ r

0
dr4πr2ρ(r) comes from the Einstein equation

• M the mass of an object (M 6=
∫ R

0
dreB(r)/24πr2ρ(r) !)
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Spherical solutions in the f(R) theories: Metric f(R)
gravity

• The modified Einstein equation − vary the action wrt the metric

FRµν −
1
2
fgµν −∇µ∇νF + gµν∆α∆αF = 8πGTµν,

notation: F (R) ≡ ∂f(R)
∂R , eg. f(R) = R− µ4/R → F (R) = 1 + µ4/R2

• ∇µTµν = 0

• The trace: ∇µ∇µF + 1
3(FR−2f) = 8πG

3 T − cf. GR: R = −8πGT +4Λ
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Spherical solutions in the f(R) theories: Metric f(R)
gravity

• In the spherically symmetric, static case (′ ≡ d
dr)

A′ = − 1
1 + rF ′/2F

(
1− eB

r
− reB

F
8πGp +

reB

2

(
R− f

F

)
+

2F ′

F

)

B′ =
1− eB

r
+

reB

F

8πG

3
(2ρ + 3p) +

reB

6

(
R +

f

F

)
− rF ′

2F
A′.
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Spherical solutions in the f(R) theories: Palatini f(R)
gravity

• The modified Einstein equation − vary the action wrt gµν and Γρ
µν:

FRµν − 1
2fgµν = 8πGTµν

∇ρ(
√
−gFgµν) = 0

• ∇̃µTµν = 0, where ∇̃µ is the covariant derivative wrt. the Levi-Civita

• The trace: FR− 2f = 8πGT (GR: R = −8πGT + 4Λ)
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• In the spherically symmetric, static case

A′ = − 1
1 + rF ′/2F

(
1− eB

r
− eB

F
8πGrp +

α

r

)

B′ =
1

1 + rF ′/2F

(
1− eB

r
+

eB

F
8πGrρ +

α + β

r

)
where

α = r2

(
3
4

(
F ′

F

)2

+
2F ′

rF
+

eB

2

(
R− f

F

))

β = r2

(
F ′′

F
− 3

2

(
F ′

F

)2
)

← F ′′ ∝ T ′′!!!

• The continuity equation p′ = −A′

2 (ρ + p)
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Solar System observations

• The structure and microphysics of the Sun
well known (interior solution)

• So far the experiments (exterior solution)
give upper bounds for deviations from GR

• No contradiction to GR predictions has been observed (except the
Pioneer anomaly)
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Solar System observations

• E.g. Solar System observations constrain the value of the cosmological
constant (Kagramanova, Kunz, Lammerzahl: Solar system effects in
Schwarzshild-de Sitter spacetime, arXiv: gr-qc/0602002):

Observed effect Estimate on Λ
gravitational redshift |Λ| ≤ 10−27m−2

perihelion shift |Λ| ≤ 10−41m−2

light deflection no effect
gravitational time delay |Λ| ≤ 6 · 10−24m−2

geodetic precession |Λ| ≤ 10−27m−2

Pioneer anomaly Λ ∼ −10−37m−2

• To account for dark energy Λ ∼ 10−52m−2
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The Post-Newtonian parameters

• The amount of deviations from Newtonian theory in Solar System scale
gravity effects (”weak field limit”)

• The Post-Newtonian parameters βPPN and γPPN :

ds2 = −

(
1− 2GM

r
+

βPPN

2

(
2GM

r

)2
)

dt2+
(

1 + γPPN
2GM

r

)
(dr2+r2dΩ2)

• βPPN = 1, γPPN = 1 in GR

• Experiments: Lunar Laser Ranging βPPN − 1 ≤ 2.3 · 10−4

Cassini Tracking γPPN − 1 ≤ 2.3 · 10−5
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The weak field limit in f(R) models

• Kainulainen, Reijonen, Sunhede: The interior spacetimes of stars in Palatini f(R) gravity. arXiv:
gr-qc/0611132; Kainulainen, Piilonen, Reijonen, Sunhede: Spherically symmetric spacetimes in f(R)
gravity theories. arXiv: 0704.2729

Numerical results: the Sun + f(R) = R− µ4/R6

r/r!
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FIG. 2: Shown are the functions A (red) and B (blue) for the
metric f(R) = R − µ4/R model (solid) and for GR (dotted).
Also shown is the function d−dvac (dashed green), where dvac

is the asymptotic value of d in vacuum.

to the one suggested in Ref. [18]:

f(R) = R + α
√

R , (31)

as a possible candidate for passing the Solar System con-
straints. We find that all models fail the PPN limit; as
long as the model parameters are set to give the correct
asymptotic cosmological constant and one does not add a
true cosmological constant to the f(R) function, all mod-
els produce results that are essentially indistinguishable
from the f(R) = R − µ4/R model in the Solar System
scale.

C. Solutions with d0 <
∼

10−5

Let us now go back to the class of solutions with very
small boundary values for d0. As explained above, in this
regime the matter induced evolution of d is strong enough
to push the solution to the nonlinear region inside a Sun-
like star. One can argue qualitatively that the resulting
solution will be one where d oscillates around the value of
dρ corresponding to the Palatini limit, Eqn. (8). Indeed,
since R is a real number, d must always remain positive
in the f(R) = R − µ4/R model. However, starting from
d0 # dρ at r = r0, d will first start to decrease. This
evolution is bound to be reversed by the nonlinear term
before d becomes negative, but once d starts to increase,
the nonlinearity shuts off again and the the finite density
effect turns the evolution back towards smaller d. As the
cycle gets repeated, the result is an oscillatory motion
around the Palatini limit, defined as the solution of the
equation (7). We show an example of this behaviour in
Fig. (4). The solid line shows the evolution of d, which
indeed settles to a damping oscillatory pattern around
the Palatini limit, shown by the dotted line. We also

r/r!
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FIG. 3: Shown is γPPN for a metric f(R) gravity (solid) and
the corresponding solution in GR (dashed).

display the metric coefficient A (dashed) which, after a
short interval of “Newtonian f(R) evolution”, settles to a
converging oscillatory track around a path parallel to the
GR solution AGR−A0 ≈ 0. The solution for B turns out
to be numerically indistinguishable from the correspond-
ing GR solution. In summary, A and B turn out to be
very close to the GR solution simply due to the fact that
the Palatini solution is virtually indistinguishable from
the GR metric (see section III).

Note that at the center of the Sun, the oscillations oc-
cur in scale ∼ 10−28r", so it is not numerically feasible to
continue the solution all the way to the surface. We have
nevertheless run the code over thousands of oscillation
periods, verifing that the solution does indeed stabilize
around the Palatini limit. Furthermore, this behaviour
is independent of the boundary value d0. (Of course, if
one sets d0 = dρ, the solution will become flat without
any oscillations.) The above example used a very small
d0, but the qualitative behaviour of the solution should
remain the same for any d0 for which the Newtonian evo-
lution is strong enough to bring d to zero inside the star.
As a result, it is safe to conclude that for sufficiently
small d0 the solution will be such that inside and in par-
ticular outside the star A ≈ AGR and B ≈ BGR, so that
γPPN ≈ 1. In practice, the boundary for this result may
be somewhat less than d <∼ 10−5 since d needs to reach
the nonlinear region already close to the center of the
star. If not, the initial evolution of A and B will have
time to push the metric and eventually γPPN too far from
the GR solution.

1. The Dolgov-Kawasaki instability

The above section explored an attractor solution
around the Palatini limit for small values of the bound-
ary value d0. However, it turns out that this class of
solutions is related to the well known Dolgov-Kawasaki
instability [13] in the f(R) = R− µ4/R model. Perturb-
ing around the static solution, d(r) → d(r)+δd(t, r), and
expanding to first order in the perturbation one obtains

– Palatini f(R): γPPN = 1

– Metric f(R): γPPN = 1/2(!!!)∗

∗)
except for a tuned class of solutions → the Dolgov-Kawasaki instability, see Kainulainen, Sunhede:

On the stability of spherically symmetric spacetimes in metric f(R) gravity, arXiv: 0803.0867
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Compact objects in modified gravity theories

• Compact objects: white dwarfs, neutron stars and black holes

− the final stages of stellar evolution

• Small size, enormous densities

− strong gravitational fields, advanced microphysics

• Equilibrium structure and stability:

f(R) (or other alternative gravity models) vs. GR

• Binary star dynamics; rotation; magnetic fields; gravitational waves;
supernovae; ...
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Compact objects in modified gravity theories

• The ”death”of a star: no more nuclear fuel to burn − no more support
by thermal pressure against gravitational collapse

– White dwarfs: the pressure of degenerate electrons
– Neutron stars: ∼ the pressure of degenerate neutrons

• Degenerate Fermi gas; T = 0 single species of ideal (non-interacting)
fermions

p = 2
3h3

∫ pF

0
dp4πp2 p2c2√

p2c2+m2
xc4
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• The polytropic equation of state

p = Kργ
0

K, γ constants and ρ0 = nxmx the rest mass density

• Extremely relativistic fermions: γ = 4/3

Non-relativistic fermions: γ = 5/3

(electrons ρ0 << 109 kg/m3 (ions), neutrons ρ0 << 6 · 1018 kg/m3)

• Corrections: electrostatic interactions − onset of inverse β-decay
e−+p→ n+νe − nucleon interactions − relativistic strongly interacting
matter − quark matter...a bit ”messy” = complicated + not-so-well-
known physics
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CH. = The Chandrasekhar limit, maximum mass of a white dwarf

TOV = The TOV limit, maximum mass of a neutron star

• E.g. If the Chandrasekhar limit became a bit smaller, might the super-

novae Ia appear a bit dimmer (∆EB ∼ GM2
core

R )?
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• E.g. Palatini f(R) = R− µ4

R

→ F (R) = 1 + µ4

R2

• From the trace equation R = 1
2(−8πGT +

√
(8πGT )2 + 12µ4) (T =

3p− ρ)

• Take ρ(r) ∼ constant:

B′ = 1
1+rF ′/2F

(
1−eB

r + eB

F 8πGrρ + α+β
r

)
≈ 1−eB

r + eB

F 8πGrρ

→ M =
∫ R

0
dr4πr2ρ(r)

F

• i) |T | >> µ2 → F ≈ 1→M = MGR

ii) |T | << µ4 → R =
√

3µ4 → F = 4
3 →M = 3

4MGR
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• The Chandrasekhar limit:
E = EF + EG

”A given ρ(r) → less EG than in GR” → the peak shifts to the right, to
higher ρc − a more dense wd explodes as SnIa
”EG grows faster than EF as a function of ρ” → the peak is lower: the
maximum mass of a wd becomes lower − less energy is released in SnIa
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• Dark energy µ2
DE ∼ 10−26 kg/m3

• A Newtonian star (eg. the Sun): ρ >> p→ T ≈ −ρ >> µ2
DE → case i)

M = MGR

• To worry (M 6= MGR...), should have p = 1
3ρ (extremely relativistic)
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Conclusion

• See a forthcoming paper...
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