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The " AN formalism"

On long wavelengths
ds? = dt? — a?(t,xX)G;; (X)dx*dz?
The exact Curvature Perturbation:
¢ =0;Ina — %32',0
Evaluated on time slices defined by the energy denéity & 0)
(; =0;Ina
Gives the AN formalism":

Ina(x) = N(¢x(x))

A spatial modulation of the initial field valug, — ¢, (X) leads to a spatial modulation of the
local expansion on time-slices of homogeneous energy tyensi

N(p+(x)) = N(¢x) + Nadgy' (X) + %NABaqbf(x)écbf () + ...

NG 7

N~

¢(x)
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IR divergences

Example: Single field (scale invariant) (¢« (x1)d«(x2)) = G(|x1 — x2])
(Cx1)C(x2)) 1) = (V)2 Gt — xal) ~ —(N")?Pln( Bapal)

Difference doesn’t depend on the IR cutoff:
(C(x1)¢(x2)) (1) — (C(x1)¢(x3)) 1) ~ —(N')*Py m‘Xl %2

At second order however:
(Ca1)C(x2)) 2) ~ —N'N""(g2)Pyln (29722l 4 L(N7)2p2in? ((Bazxel)

Two issues

® IR divergence of7(|x; — x2|)? (assumption of scale invariance)

® Suppose that there is a physical cutoff L. How does a prexdiaif the theory with cutoff
L relate to observations up to scalks < L?
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Stochastic Inflation

On super-hubble scales, the dynamics of the inflaton areuadielyy described by a stochastic
probability distributionP (¢, V') which obeyS N = Ina)

oP _ 1 92 M2 9 (v/—18V
a_N__SWMI%8¢2(VP)+8_7I:8_¢(V a_ng)

For N — oo, P reaches a time independent asymptotic:

4
3M%

PO) ~ V) exp 20tk )
with
("R o [ dpp™ P(g))

The infraredg correlators remain finite albeit large. However, this amiamimon-Gaussianity
will never be accessible for an observer within a given tredizad Hubble patch since the
observer’'s horizon will never cross the hypersurface ainetienflation:

V(¢gr) 2 e(orr)Mp

The valuepgr sets an upper bound for observationally interesting scales
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Thus, on very large scales:

® 1-point functions of the field and the curvature perturbatoe regularized by stochastic
inflation.

® There is a maximal scale associated with the surface ofadtarfitation.

Below the scale of eternal inflation the concept of an avebag&ground evolution makes sense
and one can use a perturbative approach to calculate n{fpaictions.
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Renormalization

Suppose that there exists an IR cutoff L. Then, to one loop:

® (€)= (NaNA + NaNEP(6?)(3)) Gra + 5NapNAP G,

¢ (C(x1)¢(x2)¢(x3)) =

NapNANE + (AN4po NBNC + N NBONG) (62| (GraGs +...) +

%NABC’NABNC( (G12 + G13) G12G13 + .. ) + NapNBENE G12G13Ga3

where
(1) L1 dk
<¢2>(L) — f Tpdﬁ
1/L
Ay \+B(y \\ — SAB,  _ sAB w@ sin k7 4
<¢* (Xl)(b* (X])> — 6 sz — 5 L//‘ = Pgb krij
1/L

How do these theoretical predictions relate to observatiestricted to scale®&/ < L?
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For an observer located at some random position in the boz®fsand restricted to measuring
fluctuations up to scalek! < L (state translationally invariant)

G(r) — G(r) = G(r) = (#*) 1y

In terms ofG(r) and to one loop:

2-Point Function

C0a)¢(x)) = (NaN4 + F(NaN4)B (2T + NaNAB (62, ) Gua +

{
= M
INABNABGE, + NalA (g3}

Constant

The coefficient of5 to one loop:

NaN4| _ +L(NyNHE |
PL PL

(@)0) = (NAN (6 + 6000 )
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3-point Function

(C(Xx1)¢(x2)C¢(X3)) =

(NapNANB (31 +600(1)) )

+(5NApcNPN® + NipNPCNg) (¢2>Elj\)/‘,)] (612@13 + .. )

-l-%NABCNABNC( <C~¥12 + C~¥13> G12G13 + . . > + NapNBONE G12G13Ga3
+2NABNANB<¢2>§%) (ém + G13 + 623) + const

>4

~

Disconnected

Conjecture For A(L) a generic AN coefficient” of an N-point correlator defined with an IR
cutoff L

o Au - = (46 o)

® Disconnected parts appear
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For a genericdA N coefficientA (Oneloop): L —- M = A— <A (QBL + ¢(X)E%)> >

In practice this means a renormalization flow:

M4 = —3 (AF Pe(1/M)

Thus, to one loop

° ML [(C(Xl)C(X2)C(X3)>M — %((C(Xl)QC(X2)>M + (C(x2)2*¢(X3))

I
I
@)

+(C(xa)2C0a)) m = (0% )
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An Interpretation L—-M = A— <A (¢_5L 4+ ¢(X)EJL\4))) >

In a sense, the size of the baX represents simply the renormalization point, the redé&dimsta
renormalization prescription. As the cutoff is changed, hlackground theory is changed
accordingly.

Single field, monomial potential V(¢) o< ¢™: N’ = —%ﬁq&
P

Changing M simply shifts the background field value:

b — QS\/1 — 5 In HoM
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® One is always safe by using’ Hy as an IR cutoff. However, the theory may not look the
same as that defined on super-large scales.

Since we know that our universe must have undergor® inflationary e-folds, we can
always assign a background field valpie corresponding to the time when our patch left
the horizon. Changing the size of the box simply means cimangy slightly. (
Presumably this holds for more complicated single field ipiddés )

® Can this procedure be applied for more scalar fields?

Not clear. It is plausible however that with information tre iscurvature modes, one
could find the appropriate shifts for all the fields. (Thislpably goes beyond\ N).
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Forafreefield  (((x1)¢(x2)) = (N')? G12 + s (N")2G3, =

G12 = @ (—1+v/1+ B2 (Mp/DHCC1)C(x2)) )

The differencez15 — G 13 is IR finite and assuming approximate scale invariance:

7\3/1 +((87T2))1(MP/<5)4<C(X1)C(X2)> — /14 (872) =1 (Mp /) (¢ (x1)¢(X3)) =
—$n (18
P2 712

IS a non-perturbative expression, manifestly independgthie cutoff.

A measurement of¢(x1){(x2)) and theoretical knowledge @ lead to an unambiguous and
renormalization-point independent prediction {Qg(x1){(x3)) V X3
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Conclusions

® Stochastic inflation regulates IR fluctuations for slow.r@hly regions which have
thermalized are interesting observationally.

® Predictions for the curvature perturbation on the largessible thermalized scales can
be related to observations performed in smaller regiongbyapriate redefinitions of the
coefficients in theA N expansion, up to the appearance of disconnected parts in the
correlators. This procedure can be carried out to the ca8gofnt and 3-point functions
- it was conjectured that this is so for any n-point corralato

® In a sense, the size of the bdx represents simply the renormalization point, the
redefinitions a renormalization prescription.

® ltis therefore permissible to use our horizon as a cutofo@pl calculations.

® One can construct quantities which are manifestly indeeendf the cutoff.
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