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The "∆N formalism"

On long wavelengths

ds2 = dt2 − a2(t, x)Gij(x)dxidxj

The exact Curvature Perturbation:

ζi = ∂i ln a − H
ρ̇

∂iρ

Evaluated on time slices defined by the energy density (∂iρ = 0)

ζi = ∂i ln a

Gives the "∆N formalism":

ln a(x) ≡ N(φ⋆(x))

A spatial modulation of the initial field valueφ⋆ → φ⋆(x) leads to a spatial modulation of the

local expansion on time-slices of homogeneous energy density.

N(φ⋆(x)) = N(φ̄⋆) + NAδφA
⋆ (x) +

1

2
NABδφA

⋆ (x)δφB
⋆ (x) + . . .

︸ ︷︷ ︸

ζ(x)
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IR divergences

Example: Single field (scale invariant) 〈φ⋆(x1)φ⋆(x2)〉 = G(|x1 − x2|)

〈ζ(x1)ζ(x2)〉(1) = (N ′)2 G(|x1 − x2|) ∼ −(N ′)2Pφln
(

|x1−x2|
L

)

Difference doesn’t depend on the IR cutoff:

〈ζ(x1)ζ(x2)〉(1) − 〈ζ(x1)ζ(x3)〉(1) ∼ −(N ′)2Pφln
∣
∣
∣
x1−x2

x1−x3

∣
∣
∣

At second order however:

〈ζ(x1)ζ(x2)〉(2) ∼ −N ′N ′′′〈φ2〉Pφln
(

|x1−x2|
L

)

+ 1
2
(N ′′)2P2ln2

(
|x1−x2|

L

)

Two issues

• IR divergence ofG(|x1 − x2|)? (assumption of scale invariance)

• Suppose that there is a physical cutoff L. How does a prediction of the theory with cutoff

L relate to observations up to scalesM < L?
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Stochastic Inflation

On super-hubble scales, the dynamics of the inflaton are adequately described by a stochastic

probability distributionP (φ, N) which obeys(N = ln a)

∂P
∂N

= − 1
3πM2

P

∂2

∂φ2
(V P ) +

M2

P

8π
∂

∂φ

(

V −1 ∂V
∂φ

P
)

ForN → ∞, P reaches a time independent asymptotic:

P (φ) ∼ V (φ)−1 exp

(
3M4

P

8V (φ)

)

with

〈φn〉IR ∝
∫ φmax

φmin
dφφnP (φ)

The infraredφ correlators remain finite albeit large. However, this amount of non-Gaussianity

will never be accessible for an observer within a given thermalized Hubble patch since the

observer’s horizon will never cross the hypersurface of eternal inflation:

V (φEI) & ǫ(φEI)M
4
P

The valueφEI sets an upper bound for observationally interesting scales.
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Thus, on very large scales:

• 1-point functions of the field and the curvature perturbation are regularized by stochastic

inflation.

• There is a maximal scale associated with the surface of eternal inflation.

Below the scale of eternal inflation the concept of an averagebackground evolution makes sense

and one can use a perturbative approach to calculate n-pointfunctions.

On the divergences of inflationary superhorizon perturbations – p. 5/13



Renormalization

Suppose that there exists an IR cutoff L. Then, to one loop:

• 〈ζ(x1)ζ(x2)〉 =
(

NANA + NANAB
B 〈φ2〉

(l)
(L)

)

G12 + 1
2
NABNABG2

12

• 〈ζ(x1)ζ(x2)ζ(x3)〉 =
[

NABNANB +
(

1
2
NA

ABCNBNC + NA
ABNBCNC

)
〈φ2〉

(l)
(L)

]

(G12G13 + . . .) +

1
2
NABCNABNC

(

(G12 + G13) G12G13 + . . .
)

+ NABNBCNA
C G12G13G23

where

〈φ2〉
(l)
(L)

=
1/l∫

1/L

dk
k
Pφ

〈φA
⋆ (xi)φ

B
⋆ (xj)〉 ≡ δABGij = δAB

1/l∫

1/L

dk
k
Pφ

sin krij

krij

How do these theoretical predictions relate to observations restricted to scalesM < L?
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For an observer located at some random position in the box of sizeL and restricted to measuring

fluctuations up to scalesM < L (state translationally invariant)

G(r) → G̃(r) ≡ G(r) − 〈φ2〉
(M)
(L)

In terms ofG̃(r) and to one loop:

2-Point Function

〈ζ(x1)ζ(x2)〉 =
(

NANA + 1
2
(NANA)B

B〈φ2〉
(M)
(L)

+ NANAB
B 〈φ2〉

(l)
(M)

)

G̃12 +

1
2
NABNABG̃2

12 + NANA〈φ2〉
(M)
(L)

︸ ︷︷ ︸

Constant

The coefficient ofG̃ to one loop:

NANA




φ̄L

+ 1
2
(NANA)B

B





φ̄L

〈φ2〉
(M)
(L)

=
〈

NANA

(

φ̄L + φ(x)(M)
(L)

) 〉

On the divergences of inflationary superhorizon perturbations – p. 7/13



3-point Function

〈ζ(x1)ζ(x2)ζ(x3)〉 =

[
〈

NABNANB
(

φ̄L + φ(x)(M)
(L)

) 〉

+
(

1
2
NA

ABCNBNC + NA
ABNBCNC

)
〈φ2〉

(l)
(M)

]
(

G̃12G̃13 + . . .
)

+ 1
2
NABCNABNC

( (

G̃12 + G̃13

)

G̃12G̃13 + . . .
)

+ NABNBCNA
C G̃12G̃13G̃23

+2NABNANB〈φ2〉
(M)
(L)

(

G̃12 + G̃13 + G̃23

)

+ const
︸ ︷︷ ︸

Disconnected

Conjecture: ForA(L) a generic “∆N coefficient” of an N-point correlator defined with an IR

cutoff L

• AL → AM =
〈

A
(

φ̄L + φ(x)(M)
(L)

) 〉

• Disconnected parts appear
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For a generic∆N coefficientA (One loop): L → M ⇒ A →
〈

A
(

φ̄L + φ(x)(M)
(L)

) 〉

In practice this means a renormalization flow:

M dA
dM

= − 1
2

(A)B
B Pφ(1/M)

Thus, to one loop:

• M d
dM

[

〈ζ(x1)ζ(x2)〉M − 〈ζ(x1)ζ(x3)〉M

]

= 0

• M d
dM

[

〈ζ(x1)ζ(x2)ζ(x3)〉M − 1
2

(

〈ζ(x1)2ζ(x2)〉M + 〈ζ(x2)2ζ(x3)〉M

+〈ζ(x3)2ζ(x1)〉M − 〈ζ(x)3〉M
)
]

= 0
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An Interpretation: L → M ⇒ A →
〈

A
(

φ̄L + φ(x)(M)
(L)

) 〉

In a sense, the size of the boxM represents simply the renormalization point, the redefinitions a

renormalization prescription. As the cutoff is changed, the background theory is changed

accordingly.

Single field, monomial potential V (φ) ∝ φn: N ′ = − 1
n

1
M2

P

φ̄⋆

Changing M simply shifts the background field value:

φ̄ → φ̄
√

1 − P
φ̄2

ln H0M
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• One is always safe by using1/H0 as an IR cutoff. However, the theory may not look the

same as that defined on super-large scales.

Since we know that our universe must have undergone∼ 60 inflationary e-folds, we can

always assign a background field valueφ̄⋆ corresponding to the time when our patch left

the horizon. Changing the size of the box simply means changing φ̄⋆ slightly. (

Presumably this holds for more complicated single field potentials )

• Can this procedure be applied for more scalar fields?

Not clear. It is plausible however that with information on the iscurvature modes, one

could find the appropriate shifts for all the fields. (This probably goes beyond∆N ).
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For a free field: 〈ζ(x1)ζ(x2)〉 = (N ′)2 G12 + 1
2
(N ′′)2G2

12 ⇒

G12 = φ̄2
(

−1 +
√

1 + (8π2)−1(MP/φ̄)4〈ζ(x1)ζ(x2)〉
)

The differenceG12 − G13 is IR finite and assuming approximate scale invariance:

√

1 + (8π2)−1(MP/φ̄)4〈ζ(x1)ζ(x2)〉 −
√

1 + (8π2)−1(MP/φ̄)4〈ζ(x1)ζ(x3)〉 =
Pφ

φ̄2
ln

(
r13

r12

)

is a non-perturbative expression, manifestly independentof the cutoff.

A measurement of〈ζ(x1)ζ(x2)〉 and theoretical knowledge ofPφ lead to an unambiguous and

renormalization-point independent prediction for〈ζ(x1)ζ(x3)〉 ∀ x3
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Conclusions

• Stochastic inflation regulates IR fluctuations for slow roll. Only regions which have

thermalized are interesting observationally.

• Predictions for the curvature perturbation on the largest possible thermalized scales can

be related to observations performed in smaller regions by appropriate redefinitions of the

coefficients in the∆N expansion, up to the appearance of disconnected parts in the

correlators. This procedure can be carried out to the case of2-point and 3-point functions

- it was conjectured that this is so for any n-point correlator.

• In a sense, the size of the boxM represents simply the renormalization point, the

redefinitions a renormalization prescription.

• It is therefore permissible to use our horizon as a cutoff in loop calculations.

• One can construct quantities which are manifestly independent of the cutoff.
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