Is leptogenesis falsifiable at LHC?

Gilles Vertongen

(in collaboration with J.M.Frère and T.Hambye)

Service de Physique Théorique Université Libre de Bruxelles

Is leptogenesis falsifiable at LHC?

Leptogenesis \equiv Elegant solution to solve the matter - antimatter problem, but...

- for hierarchical N_R , $m_N > 10^8 \; {\rm GeV}$
- for quasi-deg. N_R , Yukawa suppressed
- \Rightarrow Difficulty to test leptogenesis!

If N_R part of Left-Right Symmetric model, then we also expect the presence of a ${\cal W}_R$

Leptogenesis \equiv Elegant solution to solve the matter - antimatter problem, but...

- for hierarchical N_R , $m_N > 10^8 \ {\rm GeV}$
- for quasi-deg. N_R , Yukawa suppressed
- ⇒ Difficulty to test leptogenesis!

If N_R part of Left-Right Symmetric model, then we also expect the presence of a ${\cal W}_R$

 \Rightarrow What would be the consequences of the observation of a W_R at LHC?

Leptogenesis

Elegant solution to solve the matter antimatter problem, but...

- for hierarchical N_R , $m_N > 10^8~{\rm GeV}$
- for quasi-deg. N_B , Yukawa suppressed
- ⇒ Difficulty to test leptogenesis!

If N_R part of Left-Right Symmetric model, then we also expect the presence of a W_R

⇒ What would be the consequences of the observation of a W_R at LHC?

Effects of a TeV W_R :

New decay :

⇒ Dilution & Washout

New scatterings :

Leptogenesis

Elegant solution to solve the matter antimatter problem, but...

- for hierarchical N_R , $m_N > 10^8~{\rm GeV}$
- for quasi-deg. N_B , Yukawa suppressed
- ⇒ Difficulty to test leptogenesis!

If N_R part of Left-Right Symmetric model, then we also expect the presence of a W_R

⇒ What would be the consequences of the observation of a W_R at LHC?

Effects of a TeV W_R :

New decay:

⇒ Dilution & Washout

Efficiencies

For $\varepsilon_N = 1$, successful lepto requires $\eta > 7 \cdot 10^{-8}$

Leptogenesis \equiv Elegant solution to solve the matter - antimatter problem, but...

- for hierarchical N_R , $m_N > 10^8 \; {\rm GeV}$
- for quasi-deg. N_R , Yukawa suppressed
- ⇒ Difficulty to test leptogenesis!

If N_R part of Left-Right Symmetric model, then we also expect the presence of a ${\cal W}_R$

 \Rightarrow What would be the consequences of the observation of a W_R at LHC?

Effects of a TeV W_R :

New decay : $\frac{1}{N_R} \sum_{Q_R} \frac{1}{N_R} \frac{1}$

Efficiencies

For $\varepsilon_N=1$, successful lepto requires $\eta>7\ 10^{-8}$

- \Rightarrow Lepto ruled out if W_R detected at LHC
- \Rightarrow Lepto can be falsified

Leptogenesis

Elegant solution to solve the matter antimatter problem, but...

- for hierarchical N_R , $m_N > 10^8$ GeV
- for quasi-deg. N_B , Yukawa suppressed
- ⇒ Difficulty to test leptogenesis!

If N_R part of Left-Right Symmetric model, then we also expect the presence of a W_R

⇒ What would be the consequences of the observation of a W_R at LHC?

Effects of a TeV W_R :

New decay:

New scatterings :

⇒ Dilution & Washout

Efficiencies

For $\varepsilon_N = 1$, successful lepto requires $\eta > 7 \cdot 10^{-8}$

- \Rightarrow Lepto ruled out if W_R detected at LHC
- ⇒ Lepto can be falsified

Bounds on m_{W_P} and m_N

Leptogenesis \equiv Elegant solution to solve the matter - antimatter problem, but...

- for hierarchical N_R , $m_N > 10^8~{\rm GeV}$
- for quasi-deg. N_R , Yukawa suppressed
- ⇒ Difficulty to test leptogenesis!

If N_R part of Left-Right Symmetric model, then we also expect the presence of a ${\cal W}_R$

 \Rightarrow What would be the consequences of the observation of a W_R at LHC?

Effects of a TeV W_R :

New decay : \Rightarrow Dilution & Washout

New scatterings : $\begin{pmatrix} N_{N_R} & N_{N_R}$

Efficiencies

For $\varepsilon_N=1$, successful lepto requires $\eta>7\ 10^{-8}$

- \Rightarrow Lepto ruled out if W_R detected at LHC
- \Rightarrow Lepto can be falsified

Bounds on m_{W_R} and m_N

 \Rightarrow Successful leptogenesis if $(m_N,m_{W_R}) > (2.6,1.8\ 10^4)$ GeV [quasi-deg.] $(m_N,m_{W_R}) > (6\ 10^8,1\ 10^{11})$ GeV [hierarch.]