Is leptogenesis falsifiable at LHC? ### Gilles Vertongen (in collaboration with J.M.Frère and T.Hambye) Service de Physique Théorique Université Libre de Bruxelles Is leptogenesis falsifiable at LHC? Leptogenesis \equiv Elegant solution to solve the matter - antimatter problem, but... - for hierarchical N_R , $m_N > 10^8 \; {\rm GeV}$ - for quasi-deg. N_R , Yukawa suppressed - \Rightarrow Difficulty to test leptogenesis! If N_R part of Left-Right Symmetric model, then we also expect the presence of a ${\cal W}_R$ Leptogenesis \equiv Elegant solution to solve the matter - antimatter problem, but... - for hierarchical N_R , $m_N > 10^8 \ {\rm GeV}$ - for quasi-deg. N_R , Yukawa suppressed - ⇒ Difficulty to test leptogenesis! If N_R part of Left-Right Symmetric model, then we also expect the presence of a ${\cal W}_R$ \Rightarrow What would be the consequences of the observation of a W_R at LHC? Leptogenesis Elegant solution to solve the matter antimatter problem, but... - for hierarchical N_R , $m_N > 10^8~{\rm GeV}$ - for quasi-deg. N_B , Yukawa suppressed - ⇒ Difficulty to test leptogenesis! If N_R part of Left-Right Symmetric model, then we also expect the presence of a W_R ⇒ What would be the consequences of the observation of a W_R at LHC? ### Effects of a TeV W_R : New decay : ⇒ Dilution & Washout #### New scatterings : Leptogenesis Elegant solution to solve the matter antimatter problem, but... - for hierarchical N_R , $m_N > 10^8~{\rm GeV}$ - for quasi-deg. N_B , Yukawa suppressed - ⇒ Difficulty to test leptogenesis! If N_R part of Left-Right Symmetric model, then we also expect the presence of a W_R ⇒ What would be the consequences of the observation of a W_R at LHC? ### Effects of a TeV W_R : New decay: ⇒ Dilution & Washout ### **Efficiencies** For $\varepsilon_N = 1$, successful lepto requires $\eta > 7 \cdot 10^{-8}$ Leptogenesis \equiv Elegant solution to solve the matter - antimatter problem, but... - for hierarchical N_R , $m_N > 10^8 \; {\rm GeV}$ - for quasi-deg. N_R , Yukawa suppressed - ⇒ Difficulty to test leptogenesis! If N_R part of Left-Right Symmetric model, then we also expect the presence of a ${\cal W}_R$ \Rightarrow What would be the consequences of the observation of a W_R at LHC? ### Effects of a TeV W_R : New decay : $\frac{1}{N_R} \sum_{Q_R} \frac{1}{N_R} \frac{1}$ #### **Efficiencies** For $\varepsilon_N=1$, successful lepto requires $\eta>7\ 10^{-8}$ - \Rightarrow Lepto ruled out if W_R detected at LHC - \Rightarrow Lepto can be falsified Leptogenesis Elegant solution to solve the matter antimatter problem, but... - for hierarchical N_R , $m_N > 10^8$ GeV - for quasi-deg. N_B , Yukawa suppressed - ⇒ Difficulty to test leptogenesis! If N_R part of Left-Right Symmetric model, then we also expect the presence of a W_R ⇒ What would be the consequences of the observation of a W_R at LHC? ### Effects of a TeV W_R : New decay: New scatterings : ⇒ Dilution & Washout #### **Efficiencies** For $\varepsilon_N = 1$, successful lepto requires $\eta > 7 \cdot 10^{-8}$ - \Rightarrow Lepto ruled out if W_R detected at LHC - ⇒ Lepto can be falsified # Bounds on m_{W_P} and m_N Leptogenesis \equiv Elegant solution to solve the matter - antimatter problem, but... - for hierarchical N_R , $m_N > 10^8~{\rm GeV}$ - for quasi-deg. N_R , Yukawa suppressed - ⇒ Difficulty to test leptogenesis! If N_R part of Left-Right Symmetric model, then we also expect the presence of a ${\cal W}_R$ \Rightarrow What would be the consequences of the observation of a W_R at LHC? ### Effects of a TeV W_R : New decay : \Rightarrow Dilution & Washout New scatterings : $\begin{pmatrix} N_{N_R} & N_{N_R}$ ### **Efficiencies** For $\varepsilon_N=1$, successful lepto requires $\eta>7\ 10^{-8}$ - \Rightarrow Lepto ruled out if W_R detected at LHC - \Rightarrow Lepto can be falsified # Bounds on m_{W_R} and m_N \Rightarrow Successful leptogenesis if $(m_N,m_{W_R}) > (2.6,1.8\ 10^4)$ GeV [quasi-deg.] $(m_N,m_{W_R}) > (6\ 10^8,1\ 10^{11})$ GeV [hierarch.]